SF51 THRU SF58

SUPERFAST RECOVERY RECTIFIERS

Reverse Voltage - 50 to 600 Volts
 Forward Current - 5.0 Amperes

Dimnsions in mm

- Case: JEDEC DO-201AD molded plastic body
- Epoxy : UL 94V-O rate flame retardant
- Lead: Axial leads, solderable per MIL-STD-202, Method 208 guaranteed
- Polarity: Color band denotes cathode end
- Mounting Position: Any

Absolute Maximum Ratings and Characteristics

Rating at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified. Single-phase, half wave, 60 Hz , resistive or inductive load. For capacitive load, derate current by 20\%.

	Symbols	SF51	SF52	SF53	SF54	SF55	SF56	SF58	Units
Repetitive Peak Reverse Voltage	$\mathrm{V}_{\text {RRM }}$	50	100	150	200	300	400	600	V
RMS Voltage	$\mathrm{V}_{\text {RMS }}$	35	70	105	140	210	280	420	V
DC Blocking Voltage	V_{DC}	50	100	150	200	300	400	600	V
Average Forward Rectified Current $0.375^{\prime \prime}(9.5 \mathrm{~mm})$ Lead Length at $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$	$\mathrm{I}_{\text {(AV) }}$	5.0							A
Peak Forward Surge Current, 8.3ms Single Half Sine-Wave Superimposed on Rated Load (JEDEC Method)	$\mathrm{I}_{\text {FSM }}$	150							A
Instantaneous Forward Voltage @ 5.0A DC and $25^{\circ} \mathrm{C}$	V_{F}	0.95					25	1.7	V
Reverse Current $@ T_{A}=25^{\circ} \mathrm{C}$ at Rated DC Blocking Voltage $@ T_{A}=100^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{R}} \\ & \mathrm{I}_{\mathrm{R}} \end{aligned}$	$\begin{aligned} & 5.0 \\ & 500 \end{aligned}$							$\begin{aligned} & \hline \mathrm{uA} \\ & \mathrm{uA} \end{aligned}$
Reverse Recovery Time (Note 1)	$\mathrm{T}_{\text {rr }}$	35						50	ns
Typical Junction Capacitance (Note 2)	C_{J}	45							pF
Typical Thermal Resistance (Note 3)	$\mathrm{R}_{\text {өJA }}$	25							${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction Temperature Range	T_{J}	-55 to +125							${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-55 to +150							${ }^{\circ} \mathrm{C}$

Note: (1) Reverse recovery test conditions: $I_{F}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{RR}}=0.25 \mathrm{~A}$.
(2) Measured at 1 MHz and applied reverse voltage of 4 Volts D.C
(3) Thermal resistance junction to ambient and form junction to lead at $0.375^{\prime \prime}(9.5 \mathrm{~mm})$ lead length, P. C. B. mounted.

FIG. 1 - TEST CIRCUIT DIAGRAM AND REVERSE RECOVERY TIME CHARACTERISTIC

FIG. 2 - TYPICAL FORWARD 3 CURRENT DERATING CURVE

FIG. 3 - TYPICAL REVERSE CHARACTERISTICS

FIG. 5 - MAXIMUM NON-REPETITIVE FORVIARD SURGE CURRENT

FIG. 4 - TYPICAL INSTANTANEOUS
FORWARD CHARACTERISTICS

FIG. 6 - TYPICAL JUNCTION CAPACITANCE

