BYV26A THRU BYV26E

SUPER FAST RECTIFIERS

Reverse Voltage - 200 to 1000 V
Forward Current - 1 A

Features

- Low cost
- Diffused junction
- Low forward voltage drop
- High current capability

Mechanical Data

- Case: Molded plastic, DO-41
- Lead: Axial leads, solderable per MIL-STD-202, Method 208

DO-41

Dimensions in millimeters

- Polarity: Color band denotes cathode end
- Mounting Position: Any

Maximum Ratings and Electrical Characteristics

Ratings at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified. Single phase, half-wave, 50 Hz , resistive or inductive load, for capacitive load, derate current by 20%.

Parameter	Symbols	BYV26A	BYV26B	BYV26C	BYV26D	BYV26E	Units
Maximum Recurrent Peak Reverse Voltage	$\mathrm{V}_{\text {RRM }}$	200	400	600	800	1000	V
Maximum RMS Voltage	$\mathrm{V}_{\text {RMS }}$	140	280	420	560	700	V
Maximum DC Blocking Voltage	$V_{D C}$	200	400	600	800	1000	V
Maximum Average Forward Rectified Current 0.375" $(9.5 \mathrm{~mm})$ Lead Length at $\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$	$\mathrm{I}_{\text {(}(\mathrm{AV})}$	1					A
Peak Forward Surge Current 10 ms Single Half Sine Wave Superimposed on Rated Load at $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	$\mathrm{I}_{\text {FSM }}$	30					A
Maximum Forward Voltage at 1 A $\mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ $\mathrm{T}_{J}=175^{\circ} \mathrm{C}$	V_{F}	$\begin{aligned} & 2.5 \\ & 1.3 \end{aligned}$					V
Maximum Reverse Current $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ at Rated DC Blocking Voltage $\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}$	I_{R}	$\begin{gathered} 5 \\ 150 \end{gathered}$					$\mu \mathrm{A}$
Maximum Reverse Recovery Time ${ }^{1)}$	t_{rr}	30			75		ns
Typical Junction Capacitance ${ }^{2)}$	C	45			4	0	pF
Typical Thermal Resistance ${ }^{3)}$	$\mathrm{R}_{\text {өJA }}$	100					${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction temperature range	T_{j}	-55 to +150					${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-55 to + 150					${ }^{\circ} \mathrm{C}$

${ }^{1)}$ Reverse recovery test conditions: $\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{R}}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{rr}}=0.25 \mathrm{~A}$.
${ }^{2)}$ Measured at 1 MHz and applied reverse voltage of 4 V D.C.
${ }^{3)}$ Thermal resistance from junction to ambient.

BYV26A THRU BYV26E

FORWARD DERATING CURVE
TYPICAL FORWARD CHARACTERISTIC
AVERAGE FORWARD CURRENT，AMPERES

AMBIENT TEMPERATURE，${ }^{\circ} \mathrm{C}$

PEAK FORWARD SURGE CURRENT

TYPICAL JUNCTION CAPACITANCE
Id ‘ヨONVIIO甘d甘O NOILONก؟
REVERSE VOLTAGE，VOLTS

