DB101 THRU DB107

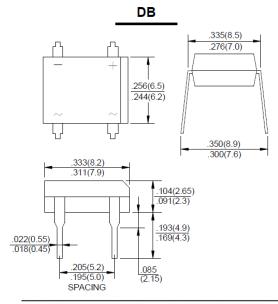
SINGLE-PHASE GLASS PASSIVATED SILICON BRIDGE RECTIFIER

Reverse Voltage - 50 to 1000 V Forward Current - 1 A

Features

- Glass passivated chip junction
- Low forward voltage drop
- High surge overload rating of 50 A peak
- · Ideal for printed circuit board

Mechanical Data


· Case: Molded plastic, DB

• Epoxy: UL 94V-0 rate flame retardant

• Terminals: Leads solderable per MIL-STD-202,

method 208 guaranteed

• Mounting position: Any

Dimensions in inches and (millimeters)

Absolute Maximum Ratings and Characteristics

Ratings at 25 °C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Parameter		DB101	DB102	DB103	DB104	DB105	DB106	DB107	Units
Maximum Recurrent Peak Reverse Voltage		50	100	200	400	600	800	1000	٧
Maximum RMS Voltage		35	70	140	280	420	560	700	V
Maximum DC Blocking Voltage		50	100	200	400	600	800	1000	V
Maximum Average Forward Rectified Current at T _A = 4	O°C I _(AV)		1				Α		
Peak Forward Surge Current 8.3 ms Single Half-sine-v Superimposed on Rated Load (JEDEC Method)	ave I _{FSM}		50						
Maximum Forward Voltage at 1 A	V _F				1.1				٧
Maximum Reverse Current at Ratedat $T_A = 20$ DC Blocking Voltageat $T_A = 10$	l R	5 500						μA	
Typical Junction Capacitance 1)			25						pF
Typical Thermal Resistance 2)			40						°C/W
Typical Thermal Resistance 2)			15						°C/W
Operating and Storage Temperature Range			-55 to +150						°С

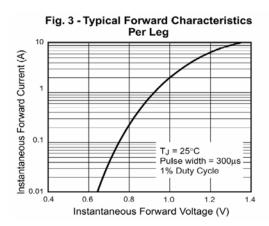
 $^{^{\}rm 1)}$ Measured at 1 MHz and applied reverse voltage of 4 V

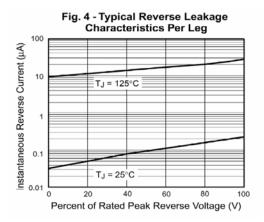
²⁾ Thermal resistance from junction to ambient and from junction to lead mounted on P.C.B with 0.5 X 0.5" (13 X 13 mm) copper pads.

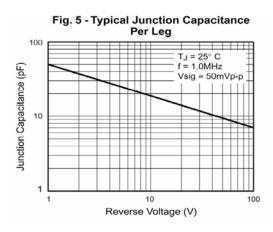
Fig. 1 - Derating Curve Output
Rectified Current

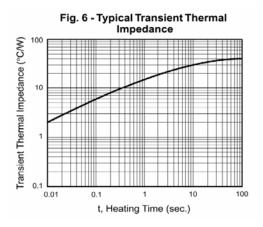
(Y)

1.0


| 1.0
| 60 Hz | Resistive or Inductive Load | In


Fig. 2 - Maximum Non-Repetitive Peak
Forward Surge Current Per Leg


60


T.J = 150°C
Single Sine-Wave
(JEDEC Method)

10
Number of Cycles at 60 Hz

