SK12B THRU SK110B

SURFACE MOUNT SCHOTTKY BARRIER RECTIFIERS

Reverse Voltage - 20 to 100 V
 Forward Current - 1 A

Features

- The plastic package carries Underwriters Laboratory Flammability Classification 94V-0
- For surface mounted applications
- Metal silicon junction, majority carrier conduction
- Low power loss, high efficiency
- Built in strain relief, ideal for automated placement
- High forward surge current capability

Mechanical Data

- Case: JEDEC DO-214AA molded plastic body
- Terminals: leads solderable per MIL-STD-750, Method 2026
- Polarity: Color band denotes cathode end
- Mounting Position: Any

Dimensions in inches and (millimeters)

Maximum Ratings and Electrical Characteristics

Ratings at $25^{\circ} \mathrm{C}$ ambient temperature unless otherwise specified. Single phase, half-wave, 60 Hz , resistive or inductive load, for capacitive load current derate by 20%.

Parameter	Symbols	SK12B	SK13B	SK14B	SK15B	SK16B	SK18B	SK110B	Units
Maximum Repetitive Peak Reverse Voltage	$\mathrm{V}_{\text {RRM }}$	20	30	40	50	60	80	100	V
Maximum RMS Voltage	$\mathrm{V}_{\text {RMS }}$	14	21	28	35	42	56	70	V
Maximum DC Blocking Voltage	VDC	20	30	40	50	60	80	100	\checkmark
Maximum Average Forward Rectified Current at T_{L}	$\mathrm{I}_{\text {(AV) }}$	1							A
Peak Forward Surge Current 8.3 ms Single Half Sine-Wave Superimposed on Rated Load (JEDEC Method)	$\mathrm{I}_{\text {FSM }}$	40							A
Maximum Instantaneous Forward Voltage at 1 A	V_{F}	0.45	0.55		0.7		0.85		V
Maximum DC Reverse Current $\quad \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$	$I_{\text {R }}$	0.5							mA
at Rated DC Blocking Voltage $\quad \mathrm{T}_{\mathrm{a}}=100^{\circ} \mathrm{C}$		6			5				
Typical Junction Capacitance ${ }^{1)}$	C	110			90				pF
Typical Thermal Resistance ${ }^{2)}$	$\mathrm{R}_{\text {өJA }}$	88							${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction Temperature Range	T_{j}	-65 to + 125			-65 to + 150				${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg }}$	-65 to + 150							${ }^{\circ} \mathrm{C}$

[^0]

FIG. 3-TYPIGAL INSTANTANEOUS FORWARD

INSTANTANEOUS FORWARD WOLEAGE, WOLTS

FIG. 5-TYPICAL JUACTION CA PACITANCE

FIG. 2-MAXIMUM MONREPETITNE PEAK FORNARD SURGE C URRENT

FIG . 4-TYPIGAL REWERSE CHARAC TERISTIGS

FIG. $6-$ TYPICAL TRANSIENT THERMAL IMPEDANCE

[^0]: ${ }^{1)}$ Measured at 1 MHz and applied reverse voltage of 4 V D.C.
 ${ }^{2)}$ P.C.B. mounted with $0.2 \times 0.2(5 \times 5 \mathrm{~mm})$ copper pad areas

