ANALOG DEVICES

FEATURES

5 V stereo audio system with 3.3 V tolerant digital interface Supports up to 96 kHz sample rates
192 kHz sample rate available on 1 DAC
Supports 16－／20－／24－bit word lengths
Multibit $\Sigma-\Delta$ modulators with perfect differential linearity restoration for reduced idle tones and noise floor
Data－directed scrambling DACs－least sensitive to jitter Single－ended output
ADCs：－95 dB THD＋N， 105 dB SNR and dynamic range
DACs：－92 dB THD＋N， 108 dB SNR and dynamic range
On－chip volume controls per channel with 1024－step linear scale
DAC and ADC software controllable clickless mutes
Digital de－emphasis processing
Supports $256 \times f_{s}, 512 \times f_{s}$ ，and $768 \times f_{s}$ master mode clocks
Power－down mode and soft power－down mode
Flexible serial data port with right－justified，left－justified，
I^{2} S compatible，and DSP serial modes
TDM interface mode supports 8－in／8－out operation using a single SHARC ${ }^{\circledR}$ SPORT
52－lead MQFP plastic package

APPLICATIONS

DVD video and audio players
Home theater systems
Automotive audio systems
Audio／visual receivers
Digital audio effects process

GENERAL DESCRIPTION

The AD1839A is a high performance single－chip codec that features three stereo DACs and one stereo ADC．Each DAC comprises a high performance digital interpolation filter，a multibit $\Sigma-\Delta$ modulator featuring Analog Devices＇patented technology，and a continuous－time voltage－out analog section． Each DAC has independent volume control and clickless mute functions．The ADC comprises two 24 －bit conversion channels with multibit $\Sigma-\Delta$ modulators and decimation filters．

The AD1839A also contains an on－chip reference with a nominal value of 2.25 V ．

The AD1839A contains a flexible serial interface that allows glueless connection to a variety of DSP chips，AES／EBU receivers，and sample rate converters．The AD1839A can be configured in left－justified，right－justified，$I^{2} S$ ，or DSP compati－ ble serial modes．Control of the AD1839A is achieved by means of an SPI° compatible serial port．While the AD1839A can be operated from a single 5 V supply，it also features a separate supply pin for its digital interface that allows the device to be interfaced to other devices using 3.3 V power supplies．The AD1839A is available in a 52 －lead MQFP package and is specified for the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ industrial temperature range．

FUNCTIONAL BLOCK DIAGRAM

[^0]
TABLE OF CONTENTS

Specifications 3
Test Conditions 3
Timing Specifications 5
Absolute Maximum Ratings 7
Temperature Range 7
ESD Caution 7
Pin Configuration and Function Descriptions. 8
Typical Performance Characteristics 9
Terminology 11
Functional Overview. 12
ADCs. 12
DACs 12
REVISION HISTORY
5/04-Data Sheet Changed from Rev. A to Rev. B
Updated FormatUniversal
Changes to Data Sheet Title1
2/04-Data Sheet Changed from Rev. 0 to Rev. A
Changes to Ordering Guide 6
Deleted Clock Signals Section 11
Added AD1835A Clocking Scheme Section 11
Added Table II and Table III and renumbered following tables 11Changes to Auxiliary (TDM Mode) Section13
Changes to Figure 5 14
Changes to Figure 6 14
Added Figures 7a and 8a 15
Renamed Figure 7 and Figure 8 to Figure 7b and Figure 8b 15
Changes to Figure 9 15
Changes to Table VIII 21
Updated Outline Dimensions 24
DAC and ADC Coding 12
AD1839A Clocking Scheme 12
RESET and Power-Down 13
Power Supply and Voltage Reference 13
Serial Control Port 13
Serial Data Ports-Data Format 14
Packed Modes 14
Auxiliary Time Division Multiplexing (TDM) Mode 14
Control/Status Registers 19
Cascade Mode 22
Outline Dimensions 24
Ordering Guide 24

SPECIFICATIONS

 TEST CONDITIONS| Supply Voltages | $5.0 \mathrm{~V}(\mathrm{AVDD}, \mathrm{DVDD})$ |
| :--- | :--- |
| Ambient Temperature | $25^{\circ} \mathrm{C}$ |
| Input Clock | $12.288 \mathrm{MHz}\left(256 \times \mathrm{f}_{\mathrm{s}}\right.$ mode $)$ |
| DAC Input Signal | $1.0078125 \mathrm{kHz}, 0 \mathrm{dBFS}$ |
| ADC Input Signal | $1.0078125 \mathrm{kHz},-1 \mathrm{dBFS}$ |
| Input Sample Rate (fs) | 48 kHz |
| Measurement Bandwidth | 0 Hz to 20 kHz |
| Word Width | 24 bits |
| Load Capacitance | 100 pF |
| Load Impedance | $47 \mathrm{k} \Omega$ |

Performance of all channels is identical (except for the Interchannel Gain Mismatch and Interchannel Phase Deviation specifications).
Table 1.

Parameter	Min	Typ	Max	Unit
ANALOG-TO-DIGITAL CONVERTERS				
ADC Resolution		24		Bits
Dynamic Range (20 Hz to $20 \mathrm{kHz},-60 \mathrm{~dB}$ Input)				
No Filter		103		dB
A-Weighted (48 kHz and 96 kHz)	100	105		$d B$
Total Harmonic Distortion + Noise (THD + N)				
48 kHz		-95	-88.5	dB
96 kHz		-95	-87.5	dB
Interchannel Isolation		100		dB
Interchannel Gain Mismatch		0.025		dB
Analog Inputs				
Differential Input Range (\pm Full Scale)	-2.828		+2.828	V
Common-Mode Input Voltage		2.25		V
Input Impedance		4		$k \Omega$
Input Capacitance		15		pF
$\mathrm{V}_{\text {ReF }}$		2.25		V
DC Accuracy				
Gain Error		± 5		\%
Gain Drift		35		ppm/ ${ }^{\circ} \mathrm{C}$
DIGITAL-TO-ANALOG CONVERTERS				
DAC Resolution		24		Bits
Dynamic Range (20 Hz to $20 \mathrm{kHz},-60 \mathrm{dBFS}$ Input)				
No Filter	103	105		dB
A-Weighted Filter (48 kHz and 96 kHz)	105	108		dB
Total Harmonic Distortion + Noise (48 kHz and 96 kHz)		-92	-90	dB
Interchannel Isolation		110		dB
DC Accuracy				
Gain Error		± 4		\%
Interchannel Gain Mismatch		0.025		dB
Gain Drift		200		ppm/ ${ }^{\circ} \mathrm{C}$
Interchannel Phase Deviation		± 0.1		Degrees
Volume Control Step Size (1023 Linear Steps)		0.098		\%
Volume Control Range (Maximum Attenuation)		60		dB
Mute Attenuation		-100		dB
De-emphasis Gain Error		± 0.1		dB
Full-Scale Output Voltage at Each Pin (Single-Ended)		1.0 (2.8)		$V \mathrm{rms}(\mathrm{V} p-\mathrm{p})$
Output Resistance at Each Pin		180		Ω
Common-Mode Output Voltage		2.25		V

AD1839A

[^1]
TIMING SPECIFICATIONS

Table 2.

Parameter		Min	Max	Unit	Comments
MASTER CLOCK AND RESET					
$\mathrm{tmH}^{\text {H }}$	MCLK High	15		ns	
t_{ML}	MCLK Low	15		ns	
tpor	$\overline{\mathrm{PD}} / \overline{\text { RST }}$ Low	20		ns	
SPI PORT					
$\mathrm{t}_{\mathrm{CCH}}$	CCLK High	40		ns	
t_{CL}	CCLK Low	40		ns	
tccp	CCLK Period	80		ns	
tcos	CDATA Setup	10		ns	To CCLK rising edge
tcon	CDATA Hold	10		ns	From CCLK rising edge
tcıs	CLATCH Setup	10		ns	To CCLK rising edge
tcLu	CLATCH Hold	10		ns	From CCLK rising edge
tcoe	COUT Enable		15	ns	From CLATCH falling edge
tcod	COUT Delay		20	ns	From CCLK falling edge
tcots	COUT Three-State		25	ns	From CLATCH rising edge
DAC SERIAL PORT (48 kHz and 96 kHz)					
Normal Mode (Slave)					
$\mathrm{t}_{\text {DBH }}$	DBCLK High	60		ns	
$t_{\text {bbL }}$	DBCLK Low	60		ns	
$f_{D B}$	DBCLK Frequency	$64 \times \mathrm{fs}$			
tDLS	DLRCLK Setup	10		ns	To DBCLK rising edge
toLH	DLRCLK Hold	10		ns	From DBCLK rising edge
tods	DSDATA Setup	10		ns	To DBCLK rising edge
$\mathrm{t}_{\text {DDH }}$	DSDATA Hold	10		ns	From DBCLK rising edge
Packed 128/256 Modes (Slave)					
tobr	DBCLK High	15		ns	
tobl	DBCLK Low	15		ns	
$f_{\text {DB }}$	DBCLK Frequency	$256 \times \mathrm{f}_{\text {s }}$			
tols	DLRCLK Setup	10		ns	To DBCLK rising edge
toLH	DLRCLK Hold	10		ns	From DBCLK rising edge
tdos	DSDATA Setup	10		ns	To DBCLK rising edge
$\mathrm{t}_{\text {DDH }}$	DSDATA Hold	10		ns	From DBCLK rising edge
ADC SERIAL PORT (48 kHz and 96 kHz)					
Normal Mode (Master)					
$\mathrm{t}_{\text {AbD }}$	ABCLK Delay		25	ns	From MCLK rising edge
$\mathrm{t}_{\text {ALD }}$	ALRCLK Delay		5	ns	From ABCLK falling edge
$t_{\text {ABD }}$	ASDATA Delay		10	ns	From ABCLK falling edge
Normal Mode (Slave)					
$\mathrm{t}_{\text {ABH }}$	ABCLK High	60		ns	
$t_{\text {ABL }}$	ABCLK Low	60		ns	
f_{AB}	ABCLK Frequency	$64 \times$ fs			
$t_{\text {ALS }}$	ALRCLK Setup	5		ns	To ABCLK rising edge
$\mathrm{t}_{\text {ALH }}$	ALRCLK Hold	15		ns	From ABCLK rising edge
$t_{\text {ABD }}$	ASDATA Delay		15	ns	From ABCLK falling edge
Packed 128/256 Mode (Master)					
$\mathrm{t}_{\text {PABD }}$	ABCLK Delay		40	ns	From MCLK rising edge
$\mathrm{t}_{\text {pald }}$	LRCLK Delay		5	ns	From ABCLK falling edge
tPABDD	ASDATA Delay		10	ns	From ABCLK falling edge

AD1839A

Parameter		Min	Max	Unit	Comments
TDM256 MODE (Master, 48 kHz and 96 kHz)		1515	40	ns	
$\mathrm{t}_{\text {tib }}$	BCLK Delay				From MCLK rising edge
tmsp	FSTDM Delay		5	ns	From BCLK rising edge
$\mathrm{t}_{\text {tabdo }}$	ASDATA Delay		10	ns	From BCLK rising edge
ttods	DSDATA1 Setup			ns	To BCLK falling edge
ttoon	DSDATA1 Hold			ns	From BCLK falling edge
TDM256 MODE (Slave, 48 kHz and 96 kHz)					
$\mathrm{f}_{\text {AB }}$	BCLK Frequency	$256 \times \mathrm{f}_{5}$			
$\mathrm{trBCH}^{\text {I }}$	BCLK High	17		ns	
treck	BCLK Low	17		ns	
$\mathrm{t}_{\text {TfS }}$	FSTDM Setup	10		ns	To BCLK falling edge
$\mathrm{t}_{\text {TH }}$	FSTDM Hold	10		ns	From BCLK falling edge
$\mathrm{t}_{\text {trod }}$	ASDATA Delay		15	ns	From BCLK rising edge
ttods	DSDATA1 Setup	15		ns	To BCLK falling edge
$\mathrm{t}_{\text {tod }}$	DSDATA1 Hold	15		ns	From BCLK falling edge
TDM512 MODE (Master, 48 kHz)					
tibo	BCLK Delay		40	ns	From MCLK rising edge
trso	FSTDM Delay		5	ns	From BCLK rising edge
$\mathrm{t}_{\text {tabd }}$	ASDATA Delay		10	ns	From BCLK rising edge
$\mathrm{t}_{\text {tods }}$	DSDATA1 Setup	15		ns	To BCLK falling edge
ttod	DSDATA1 Hold	15		ns	From BCLK falling edge
TDM512 MODE (Slave, 48 kHz)		$512 \times \mathrm{f}_{5}$			
$f_{A B}$	BCLK Frequency				
$\mathrm{t}_{\text {tech }}$	BCLK High	17		ns	
$\mathrm{t}_{\text {trac }}$	BCLK Low	17		ns	
tifs	FSTDM Setup	10		ns	To BCLK falling edge
$\mathrm{t}_{\text {tre }}$	FSTDM Hold	10		ns	From BCLK falling edge
trbod $^{\text {d }}$	ASDATA Delay	15		ns	From BCLK rising edge
trods	DSDATA1 Setup	15		ns	To BCLK falling edge
$\mathrm{t}_{\text {tro }}$	DSDATA1 Hold	15			From BCLK falling edge
AUXILIARY INTERFACE (48 kHz and 96 kHz)				ns	To AUXBCLK rising edge From AUXBCLK rising edge From AUXBCLK falling edge
taxxos	AAUXDATA Setup	10			
$\mathrm{tax}_{\text {a }}$	AAUXDATA Hold	10		ns	
toxo	DAUXDATA Delay	10		ns	
$f_{\text {ABP }}$	AUXBCLK Frequency	$64 \times \mathrm{fs}_{5}$		ns	
Slave Mode					
$\mathrm{taxer}^{\text {¢ }}$	AUXBCLK High	15		ns	
taxxb	AUXBCLK Low	15		ns	
$\mathrm{taxx}^{\text {s }}$	AUXLRCLK Setup	10		ns	To AUXBCLK rising edge
$\mathrm{taxLH}^{\text {a }}$	AUXLRCLK Hold	10		ns	From AUXBCLK rising edge
Master Mode		20			
$\mathrm{tauxbcik}^{\text {a }}$	AUXBCLK Delay			ns	From MCLK rising edge
$\mathrm{tauxirack}^{\text {a }}$	AUXLRCLK Delay	15		ns	From AUXBCLK falling edge

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
AVDD, DVDD, ODVDD to AGND,	
DGND	-0.3 V to +6.0 V
AGND to DGND	-0.3 V to +0.3 V
Digital I/O Voltage to DGND	-0.3 V to ODVDD +0.3 V
Analog I/O Voltage to AGND	-0.3 V to AVDD +0.3 V
Operating Temperature Range Industrial (A Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

TEMPERATURE RANGE

Table 4.

Parameter	Min	Typ	Max	Unit
Specifications Guaranteed		+25		${ }^{\circ} \mathrm{C}$
Functionality Guaranteed	-40		+85	${ }^{\circ} \mathrm{C}$
Storage	-65		+150	${ }^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

AD1839A

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Input/Output	Description
1,39	DVDD		Digital Power Supply. Connect to digital 5 V supply.
2	CLATCH	I	Latch Input for Control Data.
3	CIN	IN	Serial Control Input.
4	PD/RST	I	Power-Down/Reset.
$5,10,16,24,30,34$	AGND		Analog Ground.
$6,8,12,14,25,27,31-33$	NC		Not connected.
$7,13,26$	OUTLx	O	DACx Right Channel Negative Output.
$9,15,28$	OUTRx	O	DACx Right Channel Positive Output.
$11,19,29$	AVDD		Analog Power Supply. Connect to analog 5 V supply.
17	FILTD		Filter Capacitor Connection. Recommended $10 \mu \mathrm{FF} / 100 \mathrm{nF}$.
18	FILTR		Reference Filter Capacitor Connection. Recommended $10 \mu \mathrm{~F} / 100 \mathrm{nF}$.
20	ADCLN	I	ADC Left Channel Negative Input.
21	ADCLP	IDC Left Channel Positive Input.	
22	ADCRN	I	ADC Right Channel Negative Input.
23	ADCRP	I	ADC Right Channel Positive Input.
35	M/S	I	ADC Master/Slave Select.
36	DAUXDATA	O	Auxiliary DAC Output Data.
37	DLRCLK	I/O	DAC LR Clock.
38	DBCLK	I/O	DAC Bit Clock.
40,52	DGND		Digital Ground.
$41-43$	DSDATAx	I	DACx Input Data (left and right channels).
44	AAUXDATA3	I	Auxiliary ADC3 Digital Input.
45	ABCLK	I/O	ADC Bit Clock.
46	ALRCLK	I/O	ADC LR Clock.
47	MCLK	I	Master Clock Input.
48	ODVDD		Digital Output Driver Power Supply.
49	ASDATA	O	ADC Serial Data Output.
50	COUT	O	Output for Control Data.
51	CCLK	I	

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. ADC Composite Filter Response

Figure 5. $A D C$ High-Pass Filter Response, $f_{s}=48 \mathrm{kHz}$

Figure 7. ADC High-Pass Filter Response, $f_{s}=96 \mathrm{kHz}$

Figure 8. DAC Composite Filter Response, $f_{s}=48 \mathrm{kHz}$

Figure 9. DAC Composite Filter Response, $f_{s}=96 \mathrm{kHz}$

Figure 10. DAC Composite Filter Response, $f_{s}=192 \mathrm{kHz}$

Figure 11. DAC Composite Filter Response, $f_{s}=48 \mathrm{kHz}$ (Pass-Band Section)

Figure 12. DAC Composite Filter Response, $f_{s}=96 \mathrm{kHz}$ (Pass-Band Section)

Figure 13. DAC Composite Filter Response, $f_{s}=192 \mathrm{kHz}$ (Pass-Band Section)

TERMINOLOGY

Dynamic Range

The ratio of a full-scale input signal to the integrated input noise in the pass band (20 Hz to 20 kHz), expressed in decibels. Dynamic range is measured with a -60 dB input signal and is equal to $(\mathrm{S} /[\mathrm{THD}+\mathrm{N}])+60 \mathrm{~dB}$. Note that spurious harmonics are below the noise with a -60 dB input, so the noise level establishes the dynamic range. The dynamic range is specified with and without an A-weight filter applied.

Signal-to-(Total Harmonic Distortion + Noise)
 [S/(THD + N)]

The ratio of the root-mean-square (rms) value of the fundamental input signal to the rms sum of all other spectral components in the pass band, expressed in decibels.

Pass Band

The region of the frequency spectrum unaffected by the attenuation of the digital decimator's filter.

Pass-Band Ripple

The peak-to-peak variation in amplitude response from equalamplitude input signal frequencies within the pass band, expressed in decibels.

Stop Band

The region of the frequency spectrum attenuated by the digital decimator's filter to the degree specified by stop-band attenuation.

Gain Error

With identical near full-scale inputs, the ratio of actual output to expected output, expressed as a percentage.

Interchannel Gain Mismatch

With identical near full-scale inputs, the ratio of outputs of the two stereo channels, expressed in decibels.

Gain Drift

Change in response to a near full-scale input with a change in temperature, expressed as parts-per-million (ppm) per ${ }^{\circ} \mathrm{C}$.

Crosstalk (EIAJ Method)

Ratio of response on one channel with a grounded input to a full-scale 1 kHz sine wave input on the other channel, expressed in decibels.

Power Supply Rejection

With no analog input, signal present at the output when a 300 mV p-p signal is applied to the power supply pins, expressed in decibels of full scale.

Group Delay

Intuitively, the time interval required for an input pulse to appear at the converter's output, expressed in microseconds. More precisely, the derivative of radian phase with respect to the radian frequency at a given frequency.

Group Delay Variation

The difference in group delays at different input frequencies. Specified as the difference between the largest and the smallest group delays in the pass band, expressed in microseconds.

Acronyms

ADC-Analog-to-digital converter.
DAC-Digital-to-analog converter.
DSP—Digital signal processor.
IMCLK-Internal master clock signal used to clock the ADC and DAC engines.

MCLK—External master clock signal applied to the AD1839A.

AD1839A

FUNCTIONAL OVERVIEW

ADCS

There are two ADC channels in the AD1839A, configured as a stereo pair. Each ADC has fully differential inputs. The ADC section can operate at a sample rate of up to 96 kHz . The ADCs include on-board digital decimation filters with 120 dB stopband attenuation and linear phase response, operating at an oversampling ratio of 128 (for 48 kHz operation) or 64 (for 96 kHz operation).

The peak level information for each ADC may be read from the ADC Peak 0 and ADC Peak 1 registers. The data is supplied as a 6 -bit word with a maximum range of 0 dB to -63 dB and a resolution of 1 dB . The registers hold peak information until read; after reading, the registers are reset so that new peak information can be acquired. (Refer to the register description in Table 10 for details of the format.) The two ADC channels have a common serial bit clock and a left-right framing clock. The clock signals are all synchronous with the sample rate.

The ADC digital pins, ABCLK and ALRCLK, can be set to operate as inputs or outputs by connecting the $\overline{\mathrm{M}} / \mathrm{S}$ pin to ODVDD or DGND, respectively. When the pins are set as outputs, the AD1839A generates the timing signals. When the pins are set as inputs, the timing must be generated by the external audio controller.

DACS

The AD1839A has six DAC channels arranged as three independent stereo pairs, with six single-ended analog outputs. Each channel has its own independently programmable attenuator, adjustable in 1,024 linear steps. Digital inputs are supplied through three serial data input pins (one for each stereo pair) and a common frame (DLRCLK) and bit clock (DBCLK). Alternatively, one of the packed data modes can be used to access all six channels on a single TDM data pin. A stereo replicate feature is included where the DAC data sent to the first DAC pair is also sent to the other DACs in the part. The AD1839A can accept DAC data at a sample rate of 192 kHz on DAC 1 only. The stereo replicate feature can then be used to copy the audio data to the other DACs.

Each of the output pins sits at a dc level of $V_{\text {ReF }}$ and swings $\pm 1.4 \mathrm{~V}$ for a 0 dB digital input signal. A single op amp, thirdorder, external low-pass filter is recommended to remove high frequency noise present on the output pins. Note that the use of op amps with low slew rate or low bandwidth may cause high frequency noise and tones to fold down into the audio band; care should be exercised in selecting these components.

The FILTD pin should be connected to an external grounded capacitor. This pin reduces the noise of the internal DAC bias circuitry, thus reducing the DAC output noise. At times, this capacitor may be eliminated with little effect on performance.

DAC AND ADC CODING

The DAC and ADC output data stream is in a twos complement encoded format. A 16-bit, 20-bit, or 24 -bit word width can be selected. The coding scheme is detailed in Table 6.
Table 6. Coding Scheme

Code	Level
011111111	+ FS
000000000	0 (Ref level)
100000000	- FS

AD1839A CLOCKING SCHEME

By default, the AD1839A requires an MCLK signal that is 256 times the required sample frequency up to a maximum of 12.288 MHz . The AD1839A uses a clock scaler to double the clock frequency for use internally. The default setting of the clock scaler is Multiply by 2 . The clock scaler can also be set to Multiply by 1 (bypass) or Multiply by $2 / 3$. The clock scaler is controlled by programming the bits in the ADC Control 3 register. The internal MCLK signal, IMCLK, should not exceed 24.576 MHz to ensure correct operation.

The MCLK of the AD1839A should remain constant during normal operation of the DAC and ADC. If it is required to change the MCLK rate, the AD1838A should be reset. Also, if MCLK scaler needs to be modified so that the IMCLK does not exceed 24.576 MHz , this should be done during the internal reset phase of the AD1839A by programming the bits in the first 3,072 MCLK periods following the reset.

Selecting the DAC Sampling Rate

The AD1839A DAC engine has a programmable interpolator that allows the user to select different interpolation rates based on the required sample rate and MCLK value available. Table 7 shows the settings required for sample rates based on a fixed MCLK of 12.288 MHz .
Table 7. DAC Sample Rate Settings

Sample Rate	Interpolator Rate	DAC Control 1 Register
48 kHz	$8 \times$	$000000 \times x x x x x x 00$
96 kHz	$4 \times$	$000000 x x x x x x x 01$
192 kHz	$2 \times$	$000000 x x x x x x x \times 10$

Selecting an ADC Sample Rate

The AD1839A ADC engine has a programmable decimator that allows the user to select the sample rate based on the MCLK value. By default, the output sample rate is IMCLK/512. To achieve a sample rate of IMCLK/256, the sample rate bit in the ADC Control 1 register should be set as shown in Table 8.
Table 8. ADC Sample Rate Settings

Sample Rate	ADC Control 1 Register
IMCLK/512	$1100000 \times x 0 x x \times x x(48 \mathrm{kHz})$
$\mathrm{IMCLK} / 256$	$1100000 \times x 1 \times x \times x x(96 \mathrm{kHz})$

To maintain the highest performance possible, the clock jitter of the master clock signal should be limited to less than 300 ps rms , measured using the edge-to-edge technique. Even at these levels, extra noise or tones may appear in the DAC outputs if the jitter spectrum contains large spectral peaks. It is highly recommended that the master clock be generated by an independent crystal oscillator. In addition, it is especially important that the clock signal not be passed through an FPGA or other large digital chip before being applied to the AD1839A. In most cases, this induces clock jitter because the clock signal is sharing common power and ground connections with unrelated digital output signals.

RESET AND POWER-DOWN

$\overline{\mathrm{PD}} / \overline{\mathrm{RST}}$ powers down the chip and sets the control registers to their default settings. After $\overline{\mathrm{PD}} / \overline{\mathrm{RST}}$ is deasserted, an initialization routine runs inside the device to clear all memories to zero. The initialization lasts approximately 20 LRCLK intervals. During this time, it is recommended that no SPI writes occur.

POWER SUPPLY AND VOLTAGE REFERENCE

The AD1839A is designed for 5 V supplies. Separate power supply pins are provided for the analog and digital sections. These pins should be bypassed with 100 nF ceramic chip capacitors, as close to the pins as possible, to minimize noise
pickup. A bulk aluminum electrolytic capacitor of at least $22 \mu \mathrm{~F}$ should also be provided on the same PC board as the codec. For critical applications, improved performance is obtained with separate supplies for the analog and digital sections. If this is not possible, it is recommended that the analog and digital supplies be isolated by two ferrite beads in series with the bypass capacitor of each supply. It is important that the analog supply be as clean as possible.

The internal voltage reference is brought out on the FILTR pin and should be bypassed as close as possible to the chip, with a parallel combination of $10 \mu \mathrm{~F}$ and 100 nF . The reference voltage may be used to bias external op amps to the common-mode voltage of the analog input and output signal pins. The current drawn from the $V_{\text {ref }}$ pin should be limited to less than $50 \mu \mathrm{~A}$.

SERIAL CONTROL PORT

The AD1839A has an SPI compatible control port to permit programming the internal control registers for the ADCs and DACs, and for reading the ADC signal levels from the internal peak detectors. The SPI port is a 4 -wire serial control port. The format is similar to the Motorola SPI format except the input data-word is 16 bits wide. The maximum serial bit clock frequency is 12.5 MHz and may be completely asynchronous to the sample rate of the ADCs and DACs. Figure 15 shows the format of the SPI signal.

Figure 14. Modular Clocking Scheme

Figure 15. Format of SPI Timing

AD1839A

SERIAL DATA PORTS—DATA FORMAT

The ADC serial data output mode defaults to the popular IS format, where the data is delayed by 1 BCLK interval from the edge of the LRCLK. By changing Bits 6 to 8 in ADC Control Register 2, the serial mode can be changed to right-justified (RJ), left-justified DSP (DSP), or left-justified (LJ). In the RJ mode, it is necessary to set Bits 4 and 5 to define the width of the data-word. The DAC serial data input mode defaults to $I^{2} S$. By changing Bits 5, 6, and 7 in DAC Control Register 1, the mode can be changed to RJ, DSP, LJ, or Packed Mode 256. The word width defaults to 24 bits but can be changed by reprogramming Bits 3 and 4 in DAC Control Register 1.

PACKED MODES

The AD1839A has a packed mode that allows a DSP or other controller to write to all DACs and read all ADCs using one input data pin and one output data pin. Packed Mode 256 refers to the number of BCLKs in each frame. The LRCLK is low while data from a left-channel DAC or ADC is on the data pin; LRCLK is high while data from a right-channel DAC or ADC is on the data pin. DAC data is applied on the DSDATA1 pin, and ADC data is available on the ASDATA pin. Figure 19 to Figure 24 show the timing for the packed mode. Packed mode is available for 48 kHz and 96 kHz .

AUXILIARY TIME DIVISION MULTIPLEXING (TDM) MODE

A special auxiliary mode is provided to allow three external stereo ADCs and one external stereo DAC to be interfaced to the AD1839A to provide 8 -in/8-out operation. In addition, this mode supports a glueless interface to a single SHARC DSP serial port, allowing a SHARC DSP to access all eight channels of analog I/O. In this special mode, many pins are redefined; see Table 9 for a list of redefined pins.

The auxiliary and TDM interfaces are independently configurable to operate as masters or slaves. When the auxiliary interface is set as a master, by programming the auxiliary mode bit in ADC Control Register 2, AUXLRCLK and AUXBCLK are generated by the AD1839A. When the auxiliary interface is set as a slave, AUXLRCLK and AUXBCLK need to be generated by an external ADC, as shown in Figure 27.

The TDM interface can be set to operate as a master or slave by connecting the \bar{M} / S pin to DGND or ODVDD, respectively. In master mode, the FSTDM and BCLK signals are outputs and are generated by the AD1839A. In slave mode, the FSTDM and BCLK are inputs and should be generated by the SHARC. Both 48 kHz and 96 kHz operations are available (based on a 12.288 MHz or 24.576 MHz MCLK) in this mode.

Table 9. Pin Function Changes in Auxiliary Mode

Pin Name	1^{2} S Mode	Auxiliary Mode
ASDATA (0)	${ }^{12}$ S Data Out, Internal ADC	TDM Data Out to SHARC.
DSDATA1 (I)	$12 S$ Data In, Internal DAC1	TDM Data In from SHARC.
DSDATA2 (I)/AAUXDATA1 (I	1^{2} S Data In, Internal DAC2	AUX-12S Data In 1 (from external ADC).
DSDATA3 (I)/AAUXDATA2 (I)	I^{2} S Data In, Internal DAC3	AUX-12S Data In 2 (from external ADC).
AAUXDATA3 (I)	Not Connected	AUX-12S Data In 3 (from external ADC).
ALRCLK (O)	LRCLK for ADC	TDM Frame Sync Out to SHARC (FSTDM).
ABCLK (0)	BCLK for ADC	TDM BCLK Out to SHARC.
DLRCLK (I)/AUXLRCLK (I/O)	LRCLK In/Out Internal DACs	AUX LRCLK In/Out. Driven by external LRCLK from ADC in slave mode. In master mode, driven by MCLK/512.
DBCLK (I)/AUXBCLK (I/O)	BCLK In/Out Internal DACs	AUX BCLK In/Out. Driven by external BCLK from ADC in slave mode. In master mode, driven by MCLK/8.
DAUXDATA (0)	Not Connected	AUX-12S Data Out (to external DAC).

Figure 16. Stereo Serial Modes

Figure 17. ADC Serial Mode Timing

Figure 18. DAC Serial Mode Timing

Figure 19. ADC Packed Mode 128

Figure 20. ADC Packed Mode 256

Figure 21. DAC Packed Mode 128

Figure 22. DAC Packed Mode 256

Figure 23. ADC Packed Mode Timing

Figure 24. DAC Packed Mode Timing

Figure 25. Auxiliary Mode Timing

Figure 26. Auxiliary Mode Connection (Master Mode) to SHARC

Figure 27. Auxiliary Mode Connection (Slave Mode) to SHARC

CONTROL/STATUS REGISTERS

The AD1839A has 13 control registers, 11 of which are used to set the operating mode of the part. The other two registers, ADC Peak 0 and ADC Peak 1, are read-only and should not be programmed. Each of the registers is 10 bits wide with the exception of the ADC peak reading registers, which are 6 bits wide. Writing to a control register requires a 16 -bit data frame to be transmitted. Bits 15 to 12 are the address bits of the required register. Bit 11 is a read/write bit. Bit 10 is reserved and should always be programmed to 0 . Bits 9 to 0 contain the 10 -bit value that is to be written to the register, or, in the case of a read operation, the 10 -bit register contents. Figure 15 shows the format of the SPI read and write operation.

DAC Control Registers

The AD1839A register map has eight registers that are used to control the functionality of the DAC section of the part. The function of the bits in these registers is discussed next.

Sample Rate

These bits control the sample rate of the DACs. Based on a 24.576 MHz IMCLK, sample rates of $48 \mathrm{kHz}, 96 \mathrm{kHz}$, and 192 kHz are available. The MCLK scaling bits in ADC Control 3 should be programmed appropriately, based on the master clock frequency.

Power-Down/Reset

This bit controls the power-down status of the DAC section. By default, normal mode is selected; by setting this bit, the digital section of the DAC stage can be put into a low power mode, thus reducing the digital current. The analog output section of the DAC stage is not powered down.

DAC Data-Word Width

These two bits set the word width of the DAC data. Compact disk (CD) compatibility may require 16 bits, but many modern digital audio formats require 24 -bit sample resolution.

DAC Data Format

The AD1839A serial data interface can be configured to be compatible with a choice of popular interface formats, including I^{2} S, LJ, RJ, or DSP modes. Details on these interface modes are provided in the Serial Data Ports-Data Format section.

De-emphasis

The AD1839A provides built-in de-emphasis filtering for the three standard sample rates of $32.0 \mathrm{kHz}, 44.1 \mathrm{kHz}$, and 48 kHz .

Mute DAC

Each of the six DACs in the AD1839A has its own independent mute control. Setting the appropriate bit mutes the DAC output. The AD1839A uses a clickless mute function that attenuates the output to approximately -100 dB over a number of cycles.

Stereo Replicate

Setting this bit copies the digital data sent to the stereo pair DAC1 to the three other stereo DACs in the system. This allows all three stereo DACs to be driven by one digital data stream. Note that in this mode, DAC data sent to the other DACs is ignored.

DAC Volume Control

Each DAC in the AD1839A has its own independent volume control. The volume of each DAC can be adjusted in 1,024 linear steps by programming the appropriate register. The default value for this register is 1023 , which provides no attenuation, that is, full volume.

AD1839A

ADC Control Registers

The AD1839A register map has five registers that are used to control the functionality and read the status of the ADCs. The function of the bits in each of these registers is discussed below.

ADC Peak Level

These two registers store the peak ADC result from each channel when the ADC peak readback function is enabled. The peak result is stored as a 6-bit number from 0 dB to -63 dB in 1 dB steps. The value contained in the register is reset once it has been read, allowing for continuous level adjustment as required. Note that the ADC peak level registers use the six most significant bits in the register to store the results.

Sample Rate

This bit controls the sample rate of the ADCs. Based on a 24.576 MHz IMCLK, sample rates of 48 kHz and 96 kHz are available. The MCLK scaling bits in ADC Control 3 should be programmed appropriately, based on the master clock frequency.

ADC Power-Down

This bit controls the power-down status of the ADC section and operates in a manner similar to the DAC power-down.

High-Pass Filter

The ADC signal path has a digital high-pass filter. Enabling this filter removes the effect of any dc offset in the analog input signal from the digital output codes.

ADC Data-Word Width

These two bits set the word width of the ADC data.

ADC Data Format

The AD1839A serial data interface can be configured to be compatible with a choice of popular interface formats, including I^{2} S, LJ, RJ, or DSP modes.

Master/Slave Auxiliary Mode

When the AD1839A is operating in the auxiliary mode, the auxiliary ADC control pins, AUXBCLK and AUXLRCLK, which connect to the external ADCs, can be set to operate as a master or slave. If the pins are set in slave mode, one of the external ADCs should provide the LRCLK and BCLK signals.

ADC Peak Readback
Setting this bit enables ADC peak reading. See the ADCs section for more information.

Table 10. Control Register Map

Register Address	Register Name	Description	Type	Width	Reset Setting (Hex)
0000	DACCTRL1	DAC Control 1	R/ \bar{W}	10	000
0001	DACCTRL2	DAC Control 2	$\mathrm{R} / \overline{\mathrm{W}}$	10	000
0010	DACVOL1	DAC Volume-Left 1	$\mathrm{R} / \overline{\mathrm{W}}$	10	3FF
0011	DACVOL2	DAC Volume-Right 1	R/W	10	3FF
0100	DACVOL3	DAC Volume-Left 2	R/W	10	3FF
0101	DACVOL4	DAC Volume-Right 2	R/W	10	3FF
0110	DACVOL5	DAC Volume-Left 3	R/W	10	3FF
0111	DACVOL6	DAC Volume-Right 3	R/W	10	3FF
1000	DACVOL7	DAC Volume-Left 4	R/W	10	3FF
1001	DACVOL8	DAC Volume-Right 4	R / \bar{W}	10	3FF
1010	ADCPeak0	ADC Left Peak	R	6	000
1011	ADCPeak1	ADC Right Peak	R	6	000
1100	ADCCTRL1	ADC Control 1	$\mathrm{R} / \overline{\mathrm{W}}$	10	000
1101	ADCCTRL2	ADC Control 2	R / W	10	000
1110	ADCCTRL3	ADC Control 3	R/W	10	000
1111	Reserved	Reserved	R/W	10	Reserved

Table 11. DAC Control 1

Address	R/W	RES	Function				
			De-emphasis	DAC Data Format	DAC Data-Word Width	Power-Down Reset	Sample Rate
15, 14, 13, 12	11	10	9, 8	7,6,5	4, 3	2	1,0
0000	0	0	$00=$ None	$000=12 \mathrm{~S}$	$00=24$ Bits	0 = Normal	$00=8 \times(48 \mathrm{kHz})$
			$01=44.1 \mathrm{kHz}$	$001=\mathrm{RJ}$	$01=20$ Bits	1 = Power-Down	$01=4 \times(96 \mathrm{kHz})$
			$10=32.0 \mathrm{kHz}$	$010=$ DSP	$10=16$ Bits		$10=2 \times(192 \mathrm{kHz})$
			$11=48.0 \mathrm{kHz}$	011 = LJ	11 = Reserved		$11=8 \times(48 \mathrm{kHz})$
				$100 \text { = Packed } 256$			
				101 = Packed128			
				$110 \text { = Reserved }$			
				111 = Reserved			

Table 12. DAC Control 2

Address	R/W	RES	Reserved	Function								
				Stereo Replicate	MUTE DAC							
					Reserved	Reserved	OUTR3	OUTL3	OUTR2	OUTL2	OUTR1	OUTL1
$\begin{aligned} & \hline 15,14, \\ & 13,12 \end{aligned}$	11	10	9	8	7	6	5	4	3	2	1	0
0001	0	0	0	$\begin{aligned} & 0=\text { Off } \\ & 1=\text { Replicate } \end{aligned}$	$\begin{aligned} & 0=\text { On } \\ & 1=\text { Mute } \end{aligned}$	$\begin{aligned} & 0=\text { On } \\ & 1=\text { Mute } \end{aligned}$	$\begin{aligned} & 0=\text { On } \\ & 1=\text { Mute } \end{aligned}$	$\begin{aligned} & 0=\text { On } \\ & 1=\text { Mute } \end{aligned}$	$\begin{aligned} & 0=\text { On } \\ & 1=\text { Mute } \end{aligned}$	$\begin{aligned} & 0=\text { On } \\ & 1=\text { Mute } \end{aligned}$	$\begin{aligned} & 0=\text { On } \\ & 1=\text { Mute } \end{aligned}$	$\begin{aligned} & 0=\text { On } \\ & 1=\text { Mute } \end{aligned}$

Table 13. DAC Volume Control

			Function
Address	R/ $\overline{\mathbf{W}}$	RES	DAC Volume
$15,14,13,12$	11	10	$9,8,7,6,5,4,3,2,1,0$
$0010=$ DACL1	0	0	$0000000000=$ Mute
$0011=$ DACR1			$0000000001=1 / 1023$
$0100=$ DACL2			$000000010=2 / 1023$
$0101=$ DACR2			$1111111110=1022 / 1023$
$0110=$ DACL3			
$0111=$ DACR3			

Table 14. ADC Peak

Address	R/W	RES	Function	
			Six Data Bits	Four Fixed Bits
15, 14, 13, 12	11	10	9, 8, 7, 6, 5, 4	3, 2, 1, 0
$\begin{aligned} & 1010=\text { Left ADC } \\ & 1011=\text { Right ADC } \end{aligned}$	1	0	$\begin{aligned} & 000000=0.0 \mathrm{dBFS} \\ & 000001=-1.0 \mathrm{dBFS} \\ & 000010=-2.0 \mathrm{dBFS} \\ & 111111=-63.0 \mathrm{dBFS} \end{aligned}$	0000 These four bits are always 0 .

Table 15. ADC Control 1

Address	R/W	RES	Function				
			Reserved	Filter	ADC PowerDown	Sample Rate	Reserved
15, 14, 13, 12	11	10	9	8	7	6	5, 4, 3, 2, 1, 0
1100	0	0	0	$\begin{aligned} & 0=\text { All Pass } \\ & 1=\text { High-Pass } \end{aligned}$	$\begin{aligned} & 0=\text { Normal } \\ & 1=\text { Power-Down } \end{aligned}$	$\begin{aligned} & 0=48 \mathrm{kHz} \\ & 1=96 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 0,0,0,0,0,0 \\ & 0,0,0,0,0,0 \end{aligned}$

AD1839A

Table 16. ADC Control 2

Address	R/W	RES	Function						
			Master/Slave Aux Mode	ADC Data Format	ADC DataWord Width	AUXDATA	RES	ADC MUTE	
								Right	Left
15, 14, 13, 12	11	10	9	8, 7, 6	5,4	3	2	1	0
1101	0	0	0 = Slave	$000=r^{2} \mathrm{~S}$	$00=24$ Bits	$0=$ Off	0	$0=0 n$	$0=0 n$
			1 = Master	$001=\mathrm{RJ}$	$01=20$ Bits	1 = On		1 = Mute	1 = Mute
				$010=$ DSP	$10=16$ Bits				
				011 = LJ	$11=$ Reserved				
				$100=$ Packed 256					
				101 = Packed 128					
				$110=$ Auxiliary 256					
				111 = Auxiliary 512					

Table 17. ADC Control 3

			Function				
Address	R/ $\overline{\mathbf{W}}$ RES	RES	Reserved	IMCLK Clocking Scaling	ADC Peak Readback	DAC Test Mode	ADC Test Mode
15,14, 13,12	11	10	9,8	7,6	5	$4,3,2$	1,0
1110	0	0	0,0	$00=$ MCLK $\times 2$	$0=$ Disabled Peak Readback	$000=$ Normal Mode	$00=$ Normal Mode
				$01=$ MCLK	$1=$ Enabled Peak Readback	All Others Reserved	All Others Reserved
				$10=$ MCLK $\times 2 / 3$			
				$11=$ MCLK $\times 2$			

CASCADE MODE

Dual AD1839A Cascade

The AD1839A can be cascaded to an additional AD1839A that, in addition to six external stereo ADCs and two external stereo DACs, can be used to create a 32 -channel audio system with 16 inputs and 16 outputs. The cascade is designed to connect to a SHARC DSP and operates in a time division multiplexing (TDM) format. Figure 28 shows the connection diagram for cascade operation. The digital interface for both parts must be set to operate in Auxiliary 512 mode by programming ADC Control Register 2. AD1839A Device 1 is set as the master device by connecting the \bar{M} / S pin to DGND; AD1839A Device 2 is set as a slave device by connecting the \bar{M} / S to ODVDD. Both devices should be run from the same MCLK and $\overline{\mathrm{PD}} / \overline{\mathrm{RST}}$ signals to ensure that they are synchronized. With

Device 1 set as a master, it generates the frame-sync and bit clock signals. These signals are sent to the SHARC and Device 2, ensuring that both know when to send and receive data.

The cascade can be thought of as two 256 -bit shift registers, one for each device. At the beginning of a sample interval, the shift registers contain the ADC results from the previous sample interval. The first shift register (Device 1) clocks data into the SHARC and clocks in data from the second shift register (Device 2). While this is happening, the SHARC is sending DAC data to the second shift register. By the end of the sample interval, all 512 bits of ADC data in the shift registers have been clocked into the SHARC and replaced by DAC data, which is subsequently written to the DACs. Figure 29 shows the timing diagram for the cascade operation.

Figure 28. Dual AD1839A Cascade

Figure 29. Dual AD1839A Cascade Timing

Figure 30. Typical ADC Input Filter Circuit
Figure 31. Typical DAC Output Filter Circuit

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-022-AC.
Figure 32. 52-Lead Metric Quad Flat Package [MQFP] (S-52-1)
Dimensions shown in millimeters

ORDERING GUIDE	Temperature Range	Package Description	Package Option
Model	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	52 -Lead MQFP	$\mathrm{S}-52-1$
AD1839AAS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	52 -Lead MQFP	$\mathrm{S}-52-1$
AD1839AAS-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	52 -Lead MQFP	S-52-1
AD1839AASZ ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	52 -Lead MQFP	S-52-1
AD1839AASZ-REEL 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	52 -Lead MQFP	S-52-1
EVAL-AD1839AEB			

${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

[^0]: Figure 1.

[^1]: ${ }^{1}$ Guaranteed by design.

