P OR PS PACKAGE

SLVS029F - JANUARY 1984 - REVISED MAY 2000

- Internal Series-Pass and Step-Up Switching Regulator
- Output Adjustable From 2.9 V to 30 V
- 1-V to 10-V Input for Switching Regulator
- 4.5-V to 32-V Input for Series Regulator
- Externally Controlled Switching Current
- No External Rectifier Required

SERIES IN1 1 8 OUTPUT REF 2 7 GND (PWR) SW REG IN2 3 6 SW IN SW CURRENT CTRL 4 5 GND

description

The TL499A is an integrated circuit designed to provide a wide range of adjustable regulated supply voltages. The regulated output voltage can be varied from 2.9 V to 30 V by adjusting two external resistors. When the TL499A is ac-coupled to line power through a step-down transformer, it operates as a series dc voltage regulator to maintain the regulated output voltage. With the addition of a battery from 1.1 V to 10 V, an inductor, a filter capacitor, and two resistors, the TL499A operates as a step-up switching regulator during an ac-line failure.

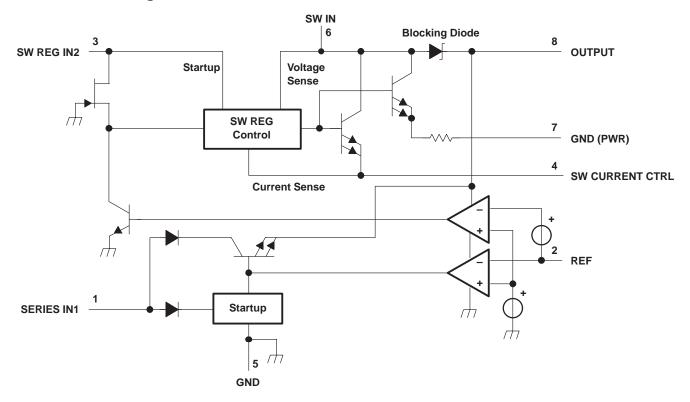
The adjustable regulated output voltage makes the TL499A useful for a wide range of applications. Providing backup power during an ac-line failure makes the TL499A extremely useful in microprocessor memory applications.

The TL499AC is characterized for operation from -20°C to 85°C.

AVAILABLE OPTIONS

100	TA	PLASTIC DIP (P)	PLASTIC SMALL-OUTLINE (PS)	CHIP FORM (Y)	
	−20°C to 85°C	TL499ACP	TL499ACPS	TL499AY	

The PS package is available taped and reeled. Add the suffix R to device type (e.g., TL499ACPSR). Chip forms are tested at 25°C.


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TL499A WIDE-RANGE POWER-SUPPLY CONTROLLERS

SLVS029F - JANUARY 1984 - REVISED MAY 2000

functional block diagram

TL499A WIDE-RANGE POWER-SUPPLY CONTROLLERS

SLVS029F - JANUARY 1984 - REVISED MAY 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Output voltage, V _O (see Note 1)	
Input voltage, switching regulator, V _I 2	
Blocking-diode reverse voltage	
Blocking-diode forward current	1 A
Power switch current (SW IN)	1 A
Package thermal impedance, θ _{JA} (see Notes 2 and 3): P package	85°C/W
PS package	95°C/W
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{stq}	−65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values are with respect to network ground terminal.
 - 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Output voltage, VO	2.9		30	V
Input voltage, V _I 1 (SERIES IN1)	4.5		32	V
Input voltage, V _I 2 (SW REG IN2)	1.1		10	V
Output-to-input differential voltage, switching regulator, VO - VI2 (see Note 4)	1.2		28.9	V
Continuous output current, IO			100	mA
Power switch current (at SW IN)			500	mA
Current-limiting resistor, R _{CL}	150		1000	Ω
Filter capacitor	100		470	μF
Pass capacitor		0.1		μF
Inductor, L (dcr \leq 0.1 Ω)	50		150	μΗ
Operating free-air temperature, T _A	-20		85	°C

NOTE 4: When operating temperature range is $T_A \le 70^{\circ}C$, minimum $V_O - V_12$ is ≥ 1.2 V. When operating temperature range is $T_A \le 85^{\circ}C$, minimum $V_O - V_12$ is ≥ 1.9 V.

TL499A WIDE-RANGE POWER-SUPPLY CONTROLLERS

SLVS029F - JANUARY 1984 - REVISED MAY 2000

electrical characteristics over recommended operating conditions (unless otherwise noted)

PARAMI	ETED		TEST C	ONDITIONS		Т	L499AC		UNIT
PARAIVII	LONGINE LEIV		TEST CO	ONDITIONS		MIN	TYP	MAX	UNIT
Voltage deviation (see I	Note 5)						20	30	mV/V
	Switching regulator	$T_A = -20^{\circ}C t$	to 70°C					1.2	
Dropout voltage	Switching regulator					1.9	V		
	Series regulator	V _I 1 = 15 V,	$I_O = 50 \text{ mA}$					1.8	
Reference voltage (inte	rnal)	$V_1 2 = 5 V$,	V _O = 3 V,	$I_O = 1 \text{ mA}$		1.2	1.26	1.32	V
Reference-voltage char	nge with temperature						5	10	mV/V
Output regulation (of re	ference voltage)	$I_O = 1 \text{ mA to}$	50 mA		10	30	mV/V		
		$V_1 2 = 1.1 V$,	$V_0 = 12 V$	$R_{CL} = 150 \Omega$,	T _A = 25°C	10			
Output current	Switching regulator	$V_1 2 = 1.5 V$,	$V_0 = 15 V$,	$R_{CL} = 150 \Omega$,	T _A = 25°C	15			mA
(see Figure 1)		$V_1 2 = 6 V$,	$V_0 = 30 V$	$R_{CL} = 150 \Omega$,	T _A = 25°C	65			IIIA
	Series regulator							100	
Standby current	Switching regulator	$V_1 2 = 3 V$,	V _O = 9 V,	T _A = 25°C			15	80	μΑ
Standby current	Series regulator	V _I 1 = 15 V,	$V_0 = 9 V$,	$R_{E}2 = 4.7 \text{ k}\Omega$			0.8	1.2	mA

NOTE 5: Voltage deviation is the output voltage difference that occurs in a change from series regulation to switching regulation: Voltage deviation = $V_O(\text{series regulation}) - V_O(\text{switching regulation})$

electrical characteristics over recommended operating conditions, $T_A = 25^{\circ}C$ (unless otherwise noted)

PARAM	ETED		TEST CONDITIO	NIC .	Т	L499AY		UNIT	
PARAWI	EIEK		TEST CONDITIO	วทอ	MIN	TYP	MAX	UNII	
Voltage deviation (see	Note 5)					20	30	mV/V	
	Switching regulator	$T_A = -20^{\circ}C$ to	70°C				1.2		
Dropout voltage	Switching regulator	$T_A = -20^{\circ}C$ to	85°C			1.9	V		
	Series regulator	V _I 1 = 15 V,	$I_O = 50 \text{ mA}$				1.8		
Reference voltage (inte	rnal)	$V_1 2 = 5 V$,	$V_{O} = 3 V$,	$I_O = 1 \text{ mA}$	1.2			V	
Reference-voltage char	nge with temperature	$T_A = -20^{\circ}C$ to	85°C		5	10	mV/V		
Output regulation (of re	ference voltage)	$I_{O} = 1 \text{ mA to } 50$		10	30	mV/V			
		$V_1 2 = 1.1 V$,	$V_0 = 12 V$,	R_{CL} = 150 Ω	10				
Output current	Switching regulator	V _I 2 = 1.5 V,	$V_0 = 15 V$,	R_{CL} = 150 Ω	15			mA	
(see Figure 1)		V _I 2 = 6 V,	$V_0 = 30 V$,	R_{CL} = 150 Ω	65				
	Series regulator		·	·			100		
Standby ourrant	Switching regulator	V _I 2 = 3 V,	V _O = 9 V	·		15	80	μΑ	
Standby current	Series regulator	V _I 1 = 15 V,	V _O = 9 V,	$R_{E}2 = 4.7 \text{ k}\Omega$		0.8	1.2	mA	

NOTE 5: Voltage deviation is the output voltage difference that occurs in a change from series regulation to switching regulation: Voltage deviation = $V_O(series regulation) - V_O(series regulation)$

APPLICATION INFORMATION

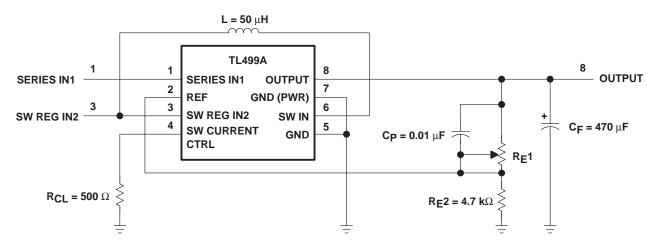


Figure 1. TL499A Basic Configuration

Table 1. Maximum Output Current vs Input and Output Voltages for Step-Up Switching Regulator With R_{CL} = 150 Ω

OUTPUT	SWITCHING REGULATOR INPUT VOLTAGE (SW REG IN2) (V)												
VOLTAGE	1.1	1.2	1.3	1.5	1.7	2	2.5	3	5	6	9		
(V)	OUTPUT CURRENT (mA)												
30									65 90				
25									50	50 80			
20						20	25	30	80 100		100		
15				15	20	30	45	55	100	100	100		
12	10	15	20	25	30	40	55	70	100	100	100		
10	15	20	25	30	35	45	65	80	100	100			
9	20	25	25	35	40	50	70	90	100	100			
6	30	35	40	45	55	75	95	100					
5	35	40	45	55	70	85	100	100	Circuit of Figure 1, except:				
4.5	35	45	50	60	75	95	100	100†	R_{CL} = 150 Ω				
3	55	65†	75†	95†	100†				C _F = 330 μF				
2.9	60†	70†	75†	100†	100†				c _i	p = 0.1 µ	ιF		

[†]The difference between the output and input voltage for these combinations is greater than the minimum output-to-input differential-voltage specification at 70°C (1.2 V), but less than the minimum at 85°C (1.9 V).

APPLICATION INFORMATION

Table 2. Maximum Output Current vs Input and Output Voltages for Step-Up Switching Regulator With R_{CL} = 200 Ω

OUTPUT	SWITCHING REGULATOR INPUT VOLTAGE (SW REG IN2) (V)												
VOLTAGE	1.1	1.2	1.3	1.5	1.7	2	2.5	3	5	6	9		
(V)	OUTPUT CURRENT (mA)												
30										50	100		
25									50	70	100		
20						15	25	30	70	90	100		
15				10	15	25	35	45	90	100	100		
12	10	10	15	20	25	35	45	60	100	100	100		
10	15	20	20	25	30	40	55	70	100	100			
9	20	20	25	30	35	45	60	80	100				
6	25	30	35	45	50	65	90	100					
5	30	35	40	55	60	75	100	100	Circuit of	Figure 1	, except:		
4.5	35	40	45	55	65	85	100	100†	R _{CL} = 200 Ω C _F = 330 μF				
3	50	55†	65†	80†	90†								
2.9	50†	60†	65†	85†	100†				C	p = 0.1 µ	ιF		

[†] The difference between the output and input voltage for these combinations is greater than the minimum output-to-input differential-voltage specification at 70°C (1.2 V), but less than the minimum at 85°C (1.9 V).

Table 3. Maximum Output Current vs Input and Output Voltages for Step-Up Switching Regulator With R_{CL} = 300 Ω

OUTPUT	SWITCHING REGULATOR INPUT VOLTAGE (SW REG IN2) (V)												
VOLTAGE	1.1	1.2	1.3	1.5	1.7	2	2.5	3	5	6	9		
(V)	OUTPUT CURRENT (mA)												
30										70			
25									40	55	100		
20						10	15	20	55	70	100		
15				10	10	20	30	35	75	95	100		
12	10	10	10	15	20	25	35	45	95	100	100		
10	15	15	15	20	25	30	45	55	100	100			
9	15	15	20	25	30	35	50	60	100	100			
6	25	25	30	35	45	55	70	90					
5	30	30	35	45	50	65	85	100	Circuit of Figure 1, except:				
4.5	30	35	40	45	55	70	95	100†	$R_{CL} = 300 \Omega$				
3	45	50†	55†	70†	90†				C _F = 330 μF				
2.9	45†	50†	60†	75†	95†				C _P = 0.1 μF				

[†]The difference between the output and input voltage for these combinations is greater than the minimum output-to-input differential-voltage specification at 70°C (1.2 V), but less than the minimum at 85°C (1.9 V).

APPLICATION INFORMATION

Table 4. Maximum Output Current vs Input and Output Voltages for Step-Up Switching Regulator With R_{CL} = 510 Ω

OUTPUT		SWITCHING REGULATOR INPUT VOLTAGE (SW REG IN2) (V)												
VOLTAGE	1.1	1.2	1.3	1.5	1.7	2	2.5	3	5	6	9			
(V)	OUTPUT CURRENT (mA)													
30										30	50			
25									25	40	75			
20									40	55	90			
15							15	20	55	70	100			
12					10	15	25	35	65	80	100			
10				10	20	25	30	40	70	85				
9	10	10	10	15	20	25	35	45	75	100				
6	15	20	20	25	30	35	50	60						
5	20	20	25	30	35	45	55	70	Circuit of	Circuit of Figure 1, except:				
4.5	20	25	30	35	40	50	65	90†	$R_{CL} = 510 \Omega$					
3	35	35†	40†	50†	75†				C _F = 330 μF					
2.9	35†	35†	40†	55†	80†				C	p = 0.1 µ	ιF			

[†]The difference between the output and input voltage for these combinations is greater than the minimum output-to-input differential-voltage specification at 70°C (1.2 V), but less than the minimum at 85°C (1.9 V).

Table 5. Maximum Output Current vs Input and Output Voltages for Step-Up Switching Regulator With R_{CL} = 1 k Ω

	SWITCHING REGULATOR INPUT VOLTAGE (SW REG IN2)													
OUTPUT		(V)												
VOLTAGE	1.1	1.2	1.3	1.5	1.7	2	2.5	3	5	6	9			
(V)	OUTPUT CURRENT (mA)													
30											35			
25										35	50			
20										35	60			
15								10	30	45	65			
12								20	40	45	85			
10							15	25	40	55				
9				10	10	15	25	30	45	60				
6	10	10	10	15	20	20	30	35						
5	10	10	15	20	20	25	35	40	Circuit of Figure 1, except:					
4.5	15	15	15	20	25	30	40	45†	R _{CL} = 1 kΩ					
3	20	25†	25†	30†	35†				C _F = 330 μF					
2.9	20†	25†	25†	30†	45†				$C_{P} = 0.1 \mu F$					
L														

The difference between the output and input voltage for these combinations is greater than the minimum output-to-input differential-voltage specification at 70°C (1.2 V), but less than the minimum at 85°C (1.9 V).

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated