

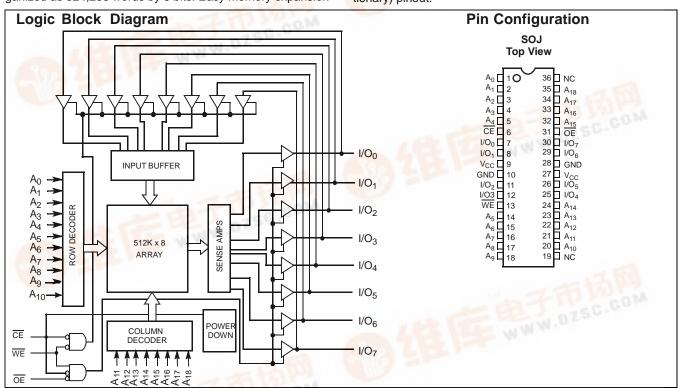
CY7C1049B

512K x 8 Static RAM

Features

- · High speed
 - $-t_{AA} = 12 \text{ ns}$
- · Low active power
 - -1320 mW (max.)
- Low CMOS standby power (Commercial L version)
 —2.75 mW (max.)
- 2.0V Data Retention (400 μW at 2.0V retention)
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features

Functional Description[1]


The CY7C1049B is a high-performance CMOS static RAM organized as 524,288 words by 8 bits. Easy memory expansion

is provided by an active LOW Chip Enable ($\overline{\text{CE}}$), an active LOW Output Enable ($\overline{\text{OE}}$), and three-state drivers. Writing to the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. Data on the eight I/O pins (I/O0 through I/O₇) is then written into the location specified on the address pins (A_0 through A_{18}).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing Write Enable ($\overline{\text{WE}}$) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected ($\overline{\text{CE}}$ HIGH), the outputs are disabled ($\overline{\text{OE}}$ HIGH), or during a write operation ($\overline{\text{CE}}$ LOW, and $\overline{\text{WE}}$ LOW).

The CY7C1049B is available in a standard 400-mil-wide 36-pin SOJ package with center power and ground (revolutionary) pinout.

Selection Guide

A SELET	44	7C1049B-12	7C1049B-15	7C1049B-17	7C1049B-20	7C1049B-25
Maximum Access Time (ns)		12	15	17	20	25
Maximum Operating Current (mA)		240	220	195	185	180
Maximum CMOS Standby	Com'l	8	8	8	8	8
Current (mA)	Com'l/Ind'l L	-	-	0.5	0.5 0.5 0.5	0.5
P PDE	Ind'l	-	-	-	9	9

for guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied-55°C to +125°C Supply Voltage on V_{CC} to Relative ${\rm GND}^{[2]}$ -0.5V to +7.0V DC Voltage Applied to Outputs in High Z State [2]-0.5V to V_{CC} + 0.5V DC Input Voltage [2]-0.5V to V_{CC} + 0.5V

Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	4.5V-5.5V
Industrial	-40°C to +85°C	

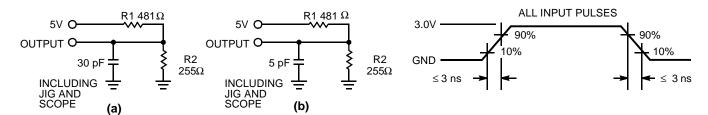
Electrical Characteristics Over the Operating Range

Parameter	Description	Test Condit	ions		7C10	49B-12	7C10	49B-15	7C1049B-17		
				Min.	Max.	Min.	Max.	Min.	Max.	Unit	
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4$	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$				2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0$) mA			0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage				2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[2]					0.8	-0.3	0.8	-0.3	0.3	V
I _{IX}	Input Load Current	$GND \leq V_{I} \leq V_{CC}$		-1	+1	-1	+1	-1	+1	μΑ	
I _{OZ}	Output Leakage Current	$\begin{aligned} GND &\leq V_{OUT} \leq V_{CC}, \\ Output Disabled \end{aligned}$		-1	+1	-1	+1	-1	+1	μА	
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.$ $f = f_{MAX} = 1/t_{RC}$				240		220		195	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{IH}} \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or} \\ &\text{V}_{\text{IN}} \leq \text{V}_{\text{IL}}, f = f_{\text{MAX}} \end{aligned}$	Max. V_{CC} , $\overline{CE} \ge V_{IH}$ $V_{IN} \ge V_{IH}$ or			40		40		40	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,	Com'l			8		8		8	mA
	Power-Down Current —CMOS Inputs	ent $CE \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$, $f = 0$	Com'l	L		-		-		0.5	mA
			Ind'I			-		-		8	mA
			Ind'l	L		-		-		0.5	mA

Note

^{2.} Minimum voltage is-2.0V for pulse durations of less than 20 ns.

Electrical Characteristics Over the Operating Range (continued)


		Test Condit	ions	7C1	049B-20	7C1	049B-25	
Parameter	Description			Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0$	2.4		2.4		V	
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0$	mA		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} + 0.3	2.2	$V_{CC} + 0.3$	V
V _{IL}	Input LOW Voltage ^[2]			-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$		-1	+1	-1	+1	μΑ
I _{OZ}	Output Leakage Current	$\begin{aligned} & \text{GND} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{CC}}, \\ & \text{Output Disabled} \end{aligned}$		-1	+1	– 1	+1	μΑ
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.$ $f = f_{MAX} = 1/t_{RC}$			185		180	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{IH}} \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or} \\ &\text{V}_{\text{IN}} \leq \text{V}_{\text{IL}}, \text{ f} = \text{f}_{\text{MAX}} \end{aligned}$			40		40	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,	Com'l		8		8	mA
	Power-Down Current —CMOS Inputs	$\overline{CE} \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$,	Com'l L		0.5		0.5	mA
	Owo inputs	or $V_{IN} \le 0.3V$, $f = 0$	Ind'l		8		8	mA
			Ind'I L		0.5		0.5	mA

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	8	pF
C _{OUT}	I/O Capacitance	$V_{CC} = 5.0V$	8	pF

Note:

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT OUTPUT O 167Ω 0.173V

^{3.} Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics^[4] Over the Operating Range

		7C104	49B-12	7C104	19B-15	7C1049B-17		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle	•		•	•	•	•	•	
t _{power}	V _{CC} (typical) to the First Access ^[5]	1		1		1		ms
t _{RC}	Read Cycle Time	12		15		17		ns
t _{AA}	Address to Data Valid		12		15		17	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE LOW to Data Valid		12		15		17	ns
t _{DOE}	OE LOW to Data Valid		6		7		8	ns
t _{LZOE}	OE LOW to Low Z ^[7]	0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		6		7		7	ns
t _{LZCE}	CE LOW to Low Z ^[7]	3		3		3		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		6		7		7	ns
t _{PU}	CE LOW to Power-Up	0		0		0		ns
t _{PD}	CE HIGH to Power-Down		12		15		17	ns
Write Cycle	[8, 9]							
t _{WC}	Write Cycle Time	12		15		17		ns
t _{SCE}	CE LOW to Write End	10		12		12		ns
t _{AW}	Address Set-Up to Write End	10		12		12		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	10		12		12		ns
t _{SD}	Data Set-Up to Write End	7		8		8		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	3		3		3		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		6		7		8	ns

Notes:

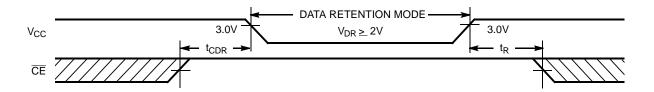
- Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- This part has a voltage regulator which steps down the voltage from 5V to 3.3V internally. t_{power} time has to be provided initially before a read/write operation
- 7.
- is started.
 \$\text{t}_{HZOE}\$, \$\text{t}_{HZOE}\$, and \$\text{t}_{HZWE}\$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured \(\pmu500 \text{mV}\) more from steady-state voltage.
 At any given temperature and voltage condition, \$\text{t}_{HZCE}\$ is less than \$\text{t}_{LZCE}\$, \$\text{t}_{HZOE}\$ is less than \$\text{t}_{LZOE}\$, and \$\text{t}_{HZWE}\$ is less than \$\text{t}_{LZWE}\$ for any given device.

 The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

 The minimum write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of \$\text{t}_{HZWE}\$ and \$\text{t}_{SD}\$.

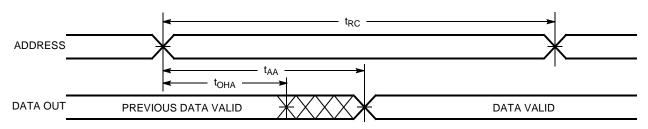
Switching Characteristics^[4] Over the Operating Range (continued)

		7C10-	49B-20	7C104		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle		<u> </u>	•	•	•	
t _{power}	V _{CC} (typical) to the First Access ^[5]	1		1		1
t _{RC}	Read Cycle Time	20		25		ns
t _{AA}	Address to Data Valid		20		25	ns
t _{OHA}	Data Hold from Address Change	3		5		ns
t _{ACE}	CE LOW to Data Valid		20		25	ns
t _{DOE}	OE LOW to Data Valid		8		10	ns
t _{LZOE}	OE LOW to Low Z ^[7]	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		8		10	ns
t _{LZCE}	CE LOW to Low Z ^[7]	3		5		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		8		10	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		20		25	ns
Write Cycle ^{[8}	3]		•			
t _{WC}	Write Cycle Time	20		25		ns
t _{SCE}	CE LOW to Write End	13		15		ns
t _{AW}	Address Set-Up to Write End	13		15		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	13		15		ns
t _{SD}	Data Set-Up to Write End	9		10		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	3		5		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		8		10	ns

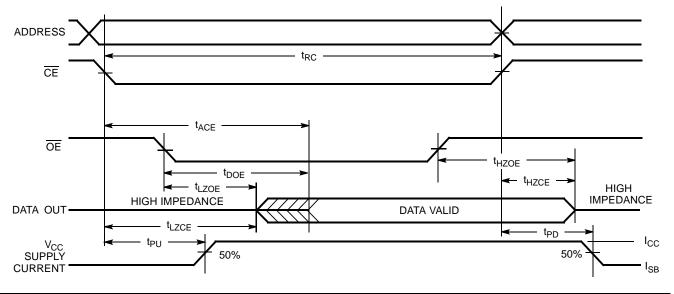

Data Retention Characteristics Over the Operating Range

Parameter	Description			Conditions ^[11]	Min.	Max	Unit
V_{DR}	V _{CC} for Data Retention				2.0		V
I _{CCDR}	Data Retention Current	Com'l	L	$\underline{V_{CC}} = V_{DR} = 3.0V,$		200	μΑ
		Ind'I		$CE \ge V_{CC} - 0.3V$ $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$		1	mA
t _{CDR} ^[3]	Chip Deselect to Data Retention Time			1W 5 ACC 0:04 01 AIM 7 0:04	0		ns
t _R ^[10]	Operation Recovery Time				t _{RC}		ns

^{10.} $t_r \le 3$ ns for the -12 and -15 speeds. $t_r \le 5$ ns for the -20 ns and slower speeds. 11. No input may exceed V_{CC} + 0.5V.



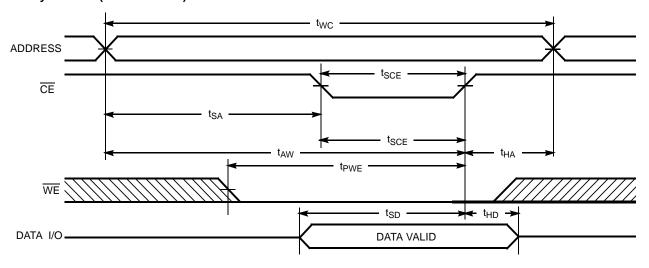
Data Retention Waveform



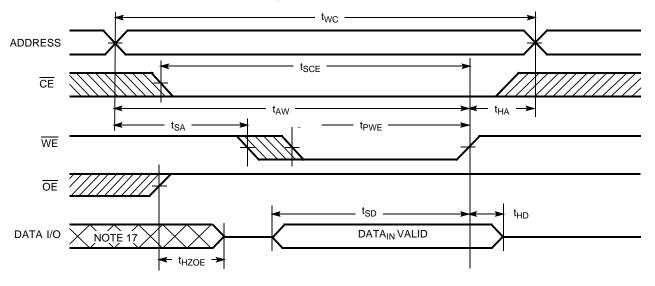
Switching Waveforms

Read Cycle No. $\mathbf{1}^{[12, 13]}$

Read Cycle No. 2 (OE Controlled)[13, 14]


Notes:

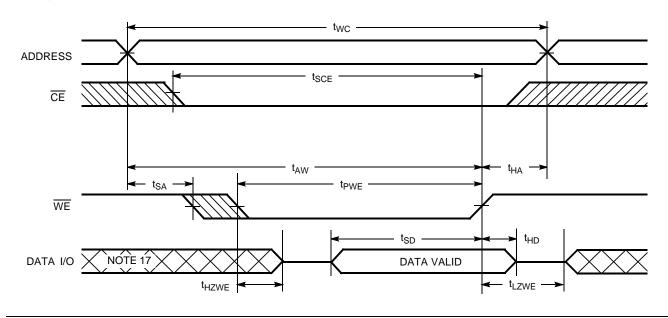
- Device is continuously selected. OE, CE = V_{IL}.
 WE is HIGH for read cycle.
 Address valid prior to or coincident with CE transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)[15, 16]

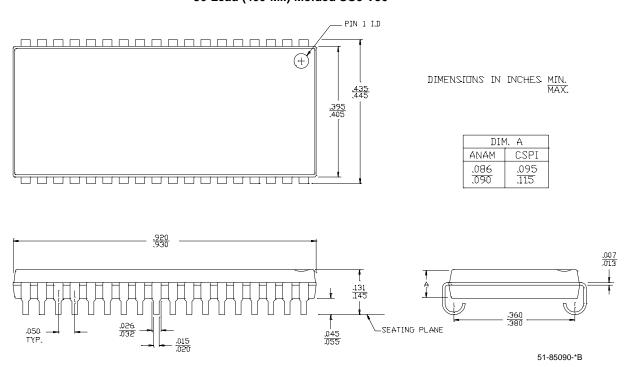
Write Cycle No. 2 (WE Controlled, OE HIGH During Write)[15, 16]


Notes:

- 15. Data I/O is high impedance if OE = V_{IH}.
 16. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.
 17. During this period the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, OE LOW)[16]


Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	12 CY7C1049B-12VC		36-Lead (400-Mil) Molded SOJ	Commercial
15	CY7C1049B-15VC	V36	36-Lead (400-Mil) Molded SOJ	
	CY7C1049B-15VI	V36	36-Lead (400-Mil) Molded SOJ	Industrial
17	CY7C1049B-17VC	V36	36-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1049BL-17VC	V36	36-Lead (400-Mil) Molded SOJ	
	CY7C1049B-17VI	V36	36-Lead (400-Mil) Molded SOJ	Industrial
20	CY7C1049B-20VC	V36	36-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1049BL-20VC	V36	36-Lead (400-Mil) Molded SOJ	
	CY7C1049B-20VI	V36	36-Lead (400-Mil) Molded SOJ	Industrial
	CY7C1049BL-20VI	V36	36-Lead (400-Mil) Molded SOJ	
25	CY7C1049B-25VC	V36	36-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1049BL-25VC	V36	36-Lead (400-Mil) Molded SOJ	
	CY7C1049B-25VI	V36	36-Lead (400-Mil) Molded SOJ	Industrial
	CY7C1049BL-25VI	V36	36-Lead (400-Mil) Molded SOJ	

Package Diagram

36-Lead (400-Mil) Molded SOJ V36

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

	Document Title: CY7C1049B 512K x 8 Static RAM Document Number: 38-05169										
REV. ECN NO. Date Change Description of Change											
**	110209	12/02/01	SZV	Change from Spec number: 38-00937 to 38-05169							
*A 116465 09/16/02 CEA Add applications foot note to data sheet, page 1.											