DESCRIPTION

January 2001

The LTC ${ }^{\circledR} 1799$ is a precision oscillator that is easy to use and occupies very little PC board space．The oscillator frequency is programmed by a single external resistor （ $\mathrm{R}_{\text {SET }}$ ）．The LTC1799 has been designed for high accuracy operation（ $\leq 1.5 \%$ frequency error）without the need for external trim components．
The LTC1799 operates with a single 2.7 V to 5.5 V power supply and provides a rail－to－rail， 50% duty cycle square wave output．The CMOS output driver ensures fast rise／fall times and rail－to－rail switching．The frequency－setting resistor can vary from 3.32 k to 1 M to select a master oscillator frequency between 100 kHz and $30 \mathrm{MHz}(5 \mathrm{~V}$ supply）．The three－state DIV input determines whether the master clock is divided by 1,10 or 100 before driving the output，providing three frequency ranges spanning 1 kHz to 30 MHz （5V supply）．The LTC1799 features a proprietary feedback loop that linearizes the relationship between RSET and frequency，eliminating the need for tables to calculate frequency．The oscillator can be easily pro－ grammed using the simple formula outlined below：
$f_{\text {OSC }}=10 \mathrm{MHz} \bullet\left(\frac{10 \mathrm{k}}{\mathrm{N} \bullet \mathrm{R}_{\text {SET }}}\right), N= \begin{cases}100, & \text { DIV PIN }=\mathrm{V}^{+} \\ 10, & \text { DIV PIN }=\mathrm{Hi}-\mathrm{Z} \\ 1, & \text { DIV PIN }=\text { GND }\end{cases}$
$\overline{\boldsymbol{\Sigma}}$ ，LTC and LT are registered trademarks of Linear Technology Corporation．

TYPICAL APPLICATION

Basic Connection

SOT－23 Actual Size

Typical Distribution of Frequency Error， $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

LTC1799

ABSOLUTE MAXIMUM RATINGS

PACKAGE/ORDER INFORMATION
(Note 1)
Supply Voltage (${ }^{+}$) to GND \qquad . -0.3 V to 6 V
DIV to GND \qquad -0.3 V to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$
SET to GND -0.3 V to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$
OUT to GND \qquad -0.3 V to $\left(\mathrm{V}^{+}+0.3 \mathrm{~V}\right)$
Operating Temperature Range LTC1799C \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1799| ... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad $300^{\circ} \mathrm{C}$

TOP VIEW	ORDER PART NUMBER
5 OUT	LTC1799CS5
GND $2 \square$	LTC1799IS5
S5 PACKAGE	S5 PART MARKING
$\mathrm{T}_{\text {max }}=125^{\circ} \mathrm{C}, \theta_{\text {A }}=256^{\circ} \mathrm{C} \mathrm{W}$	LTND
	LTNE

Consult factory for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS

The - denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{~K}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Pin $4=\mathrm{V}^{+}$unless otherwise noted. All voltages are with respect to GND.

SYMBOL	PARAMETER	CONDITIONS				MIN	TYP	MAX	UNITS
$\Delta \mathrm{f}$	Frequency Accuracy (Notes 2, 3)	$\mathrm{V}^{+}=5 \mathrm{~V}$	$5 \mathrm{kHz}<\mathrm{f}<20 \mathrm{MHz}$ 5 kHz < $\mathrm{f}<20 \mathrm{MHz}$, LTC1799C $5 \mathrm{kHz}<\mathrm{f}<20 \mathrm{MHz}$, LTC1799\| $1 \mathrm{kHz}<\mathrm{f}<5 \mathrm{kHz}$ $20 \mathrm{MHz}<\mathrm{f}<30 \mathrm{MHz}$		\bullet		$\begin{aligned} & \pm 0.5 \\ & \\ & \pm 2.5 \\ & \pm 2.5 \end{aligned}$	$\begin{gathered} \pm 1.5 \\ \pm 2 \\ \pm 2.5 \end{gathered}$	\% $\%$ $\%$ $\%$ $\%$
		$\mathrm{V}^{+}=3 \mathrm{~V}$	```5kHz<f< 10MHz 5kHz < f < 10MHz, LTC1799C 5kHz < f < 10MHz, LTC1799\| 1kHz<f< 5kHz 10MHz < f < 20MHz```		\bullet		$\begin{aligned} & \pm 0.5 \\ & \pm 2.5 \\ & \pm 2.5 \end{aligned}$	$\begin{gathered} \pm 1.5 \\ \pm 2 \\ \pm 2.5 \end{gathered}$	\% $\%$ $\%$ $\%$ $\%$
$\mathrm{R}_{\text {SET }}$	Frequency-Setting Resistor Range	$\|\Delta f\|<1.5 \%$		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{~V}^{+}=3 \mathrm{~V} \end{aligned}$		$\begin{gathered} 5 \\ 10 \end{gathered}$		$\begin{aligned} & 200 \\ & 200 \end{aligned}$	$\mathrm{k} \Omega$ $\mathrm{k} \Omega$
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency	$\|\Delta f\|<2.5 \%$, Pin 4=0V		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{~V}^{+}=3 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 30 \\ & 20 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\mathrm{f}_{\text {MIN }}$	Minimum Frequency	$\|\Delta f\|<2.5 \%$, Pin 4= V^{+}					1		kHz
$\Delta \mathrm{f} / \Delta \mathrm{T}$	Freq Drift Over Temp (Note 3)	$\mathrm{R}_{\text {SET }}=31.6 \mathrm{k}$			\bullet		± 0.004		\%/ ${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{f} / \Delta \mathrm{V}$	Freq Drift Over Supply (Note 3)	$\mathrm{V}^{+}=2.7 \mathrm{~V}$ to 5.5V, $\mathrm{R}_{\text {SET }}=31.6 \mathrm{k}$			\bullet		0.05	0.1	\%/V
	Timing Jitter (Note 4)	Pin $4=\mathrm{V}^{+}$ Pin $4=$ Floating Pin $4=0 V$					$\begin{gathered} 0.06 \\ 0.13 \\ 0.4 \\ \hline \end{gathered}$		\% $\%$ $\%$
	Long-Term Stability of Output Frequency						300		$\mathrm{ppm} / \sqrt{\mathrm{kHr}}$
	Duty Cycle	Pin $4=V^{+}$or Floating (DIV Either by 100 or 10) Pin $4=0 V($ DIV by 1$)$			\bullet	$\begin{aligned} & 49 \\ & 45 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 51 \\ & 55 \end{aligned}$	\%
V^{+}	Operating Supply Range				\bullet	2.7		5.5	V
I_{S}	Power Supply Current	$\mathrm{R}_{\text {SET }}=200 \mathrm{k}$, Pin $4=\mathrm{V}^{+}, \mathrm{R}_{\mathrm{L}}=0$		$\mathrm{V}^{+}=5 \mathrm{~V}$	\bullet		0.7	1.1	mA
		$\mathrm{R}_{\text {SET }}=10 \mathrm{k}$, Pin $4=0 \mathrm{~V}$, No Load		$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V} \\ & \mathrm{~V}^{+}=3 \mathrm{~V} \end{aligned}$	\bullet			2.4 2	mA
V_{IH}	High Level DIV Input Voltage				\bullet	$\mathrm{V}^{+}-0.4$			V
VIL	Low Level DIV Input Voltage				\bullet			0.5	V
IDIV	DIV Input Current	Pin $4=$ Pin $4=$			\bullet		$\begin{gathered} 5 \\ -5 \end{gathered}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

 temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Pin $4=\mathrm{V}^{+}$unless otherwise noted. All voltages are with respect to GND.| SYMBOL | PARAMETER | CONDITIONS | | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V_{OH} | High Level Output Voltage | $\mathrm{V}^{+}=5 \mathrm{~V}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \end{aligned}$ | | $\begin{aligned} & 4.8 \\ & 4.5 \\ & \hline \end{aligned}$ | $\begin{gathered} 4.95 \\ 4.8 \\ \hline \end{gathered}$ | | V |
| | | $\mathrm{V}^{+}=3 \mathrm{~V}$ | $\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \end{aligned}$ | \bullet | $\begin{aligned} & 2.7 \\ & 2.2 \end{aligned}$ | $\begin{aligned} & 2.9 \\ & 2.6 \end{aligned}$ | | V |
| V_{OL} | Low Level Output Voltage | $\mathrm{V}^{+}=5 \mathrm{~V}$ | $\begin{aligned} & \mathrm{I}_{0 \mathrm{~L}}=1 \mathrm{~mA} \\ & \mathrm{I}_{0 \mathrm{~L}}=4 \mathrm{~mA} \end{aligned}$ | \bullet | | $\begin{gathered} 0.05 \\ 0.2 \end{gathered}$ | $\begin{gathered} 0.15 \\ 0.4 \end{gathered}$ | V |
| | | $\mathrm{V}^{+}=3 \mathrm{~V}$ | $\begin{aligned} & \mathrm{I}_{0 \mathrm{~L}}=1 \mathrm{~mA} \\ & \mathrm{I}_{0 \mathrm{~L}}=4 \mathrm{~mA} \end{aligned}$ | \bullet | | $\begin{aligned} & 0.1 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & \hline 0.3 \\ & 0.7 \end{aligned}$ | V |
| tr_{r} | OUT Rise Time (Note 5) | $\mathrm{V}^{+}=5 \mathrm{~V}$ | $\begin{aligned} & \text { Pin } 4=V^{+} \text {or Floating, } R_{L}=0 \\ & \text { Pin } 4=0 V, R_{L}=0 \end{aligned}$ | | | $\begin{gathered} 14 \\ 7 \end{gathered}$ | | ns ns |
| | | $\mathrm{V}^{+}=3 \mathrm{~V}$ | $\begin{aligned} & \text { Pin } 4=V^{+} \text {or Floating, } R_{L}=0 \\ & \text { Pin } 4=0 V, R_{L}=0 \end{aligned}$ | | | $\begin{aligned} & 19 \\ & 11 \end{aligned}$ | | ns ns |
| t_{f} | OUT Fall Time (Note 5) | $\mathrm{V}^{+}=5 \mathrm{~V}$ | $\begin{aligned} & \text { Pin } 4=V^{+} \text {or Floating, } R_{L}=0 \\ & \text { Pin } 4=0 V, R_{L}=0 \end{aligned}$ | | | $\begin{gathered} \hline 13 \\ 6 \end{gathered}$ | | ns ns |
| | | $\mathrm{V}^{+}=3 \mathrm{~V}$ | $\begin{aligned} & \text { Pin } 4=V^{+} \text {or Floating, } R_{L}=0 \\ & \text { Pin } 4=0 V, R_{L}=0 \end{aligned}$ | | | $\begin{aligned} & 19 \\ & 10 \end{aligned}$ | | ns |

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.
Note 2: Frequencies near 100 kHz and 1 MHz may be generated using two different values of RSET (see the Table 1 in the Applications Information section). For these frequencies, the error is specified under the following assumption: 10 k < $\mathrm{R}_{\text {SET }} \leq 100 \mathrm{k}$.
Note 3: Frequency error (defined as the deviation from the fosc equation) includes drift over temperature and over supply.

Note 4: Jitter is the ratio of the peak-to-peak distribution of the period to the mean of the period. This specification is based on characterization and is not 100% tested.
Note 5: Output rise and fall times are measured between the 10\% and 90% power supply levels. These specifications are based on characterization.

PIn functions

V^{+}(Pin 1): Voltage Supply ($2.7 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5.5 \mathrm{~V}$). This supply must be kept free from noise and ripple. It should be bypassed directly to a ground plane.
GND (Pin 2): Ground. Should be tied to a ground plane for best performance.

SET (Pin 3): Frequency-Setting Resistor Input. The value of the resistor connected between this pin and V^{+}determines the oscillator frequency. The voltage on this pin is held by the LTC1799 to approximately 1.1 V below the V^{+} voltage. For best performance, use a precision metal film resistor with a value between 10k and 200k and limit the capacitance on this pin to less than $2 p F$.

DIV (Pin 4): Divider-Setting Input. This three-state input selects among three divider settings, determining the value of N in the frequency equation. Pin 4 should be tied
to GND for the $\div 1$ setting, the highest frequency range. Floating Pin 4 divides the master oscillator by 10. Pin 4 should be tied to V^{+}for the $\div 100$ setting, the lowest frequency range. To detect a floating DIV pin, the LTC1799 attempts to pull the pin toward midsupply. Therefore, driving the DIV pin high requires sourcing approximately $5 \mu \mathrm{~A}$. Likewise, driving DIV low requires sinking $5 \mu \mathrm{~A}$. When floated, the DIV pin will be held near midsupply by these current sources. When it is floated, it is recommended that the DIV pin be bypassed by a 1 nF capacitor or surrounded by a ground shield to prevent excessive coupling from other PCB traces.
OUT (Pin 5): Oscillator Output. This pin can easily drive $5 \mathrm{k} \Omega$ or 10 pF loads. Larger loads may cause inaccuracies due to supply bounce at high frequencies.

LTC1799

APPLICATIONS INFORMATION

Selecting the Divider Setting and Resistor

The LTC1799's master oscillator has a frequency range spanning 0.1 MHz to 30 MHz . However, accuracy may suffer if the master oscillator is operated at greater than 10 MHz with a supply voltage lower than 4 V . A programmable divider extends the frequency range to greater than three decades. Table 1 describes the recommended frequencies for each divider setting. Note that the ranges overlap; at some frequencies there are two divider/resistor combinations that result in the desired frequency.
In general, any given oscillator frequency ($f_{\text {Osc }}$) should be obtained using the lowest master oscillator frequency. Lower master oscillator frequencies use less power and are more accuate. For instance, $\mathrm{f}_{\text {Osc }}=100 \mathrm{kHz}$ can be obtained by either $R_{S E T}=10 \mathrm{k}, \mathrm{N}=100$, master oscillator $=10 \mathrm{MHz}$ or $\mathrm{R}_{\text {SET }}=100 \mathrm{k}, \mathrm{N}=10$, master oscillator $=1 \mathrm{MHz}$. The $\mathrm{R}_{\text {SET }}=100 \mathrm{k}$ is preferred for lower power and better accuracy.

Table 1. Frequency Range vs Divider Setting

DIVIDER SETTING		FREQUENCY RANGE
$\div 1 \Rightarrow$ DIV (Pin 4) $=$ GND		
$\div 10 \Rightarrow \quad$ DIV (Pin 4) $=$ Floating		
$\div 100 \Rightarrow \quad$ DIV (Pin 4) $=V^{+}$		
$\div \mathrm{kHz}$ to 1 MHz		

*At master oscillator frequencies greater than $10 \mathrm{MHz}(\mathrm{RSET}<10 \mathrm{k} \Omega$), the LTC1799 may suffer reduced accuracy with a supply voltage less than 4 V .
After choosing the proper divider setting, determine the correct frequency-setting resistor. Because of the linear correspondence between oscillation period and resistance, a simple equation relates resistance with frequency.

$$
\begin{aligned}
& \mathrm{R}_{\text {SET }}=10 \mathrm{k} \bullet\left[10 \mathrm{MHz} /\left(\mathrm{N} \bullet \mathrm{f}_{\mathrm{OS}}\right)\right], \mathrm{N}=1,10,100 \\
& \left(\mathrm{R}_{\text {SETMIN }}=3.32 \mathrm{k}(5 \mathrm{~V} \text { Supply), } 5 \mathrm{k}(3 \mathrm{~V} \text { Supply), }\right. \\
& \left.\mathrm{R}_{\text {SETMAX }}=1 \mathrm{M}\right)
\end{aligned}
$$

Any resistor, $\mathrm{R}_{\text {SET }}$, tolerance adds to the inaccuracy of the oscillator, fosc.

Settling Time

The settling time is proportional to $\mathrm{R}_{\text {SET }}$ and is approximately $\mathrm{t}_{\text {SETTLE }} \approx \mathrm{R}_{\text {SET }} \cdot(5 \mu \mathrm{~S} / \mathrm{k} \Omega)$. This parameter is guaranteed by design and not 100% tested.

Dimensions in inches (millimeters) unless otherwise noted.
S5 Package
5-Lead Plastic SOT-23
(LTC DWG \# 05-08-1633)

