查询SN74ALVCH16269供应商

<u>捷多邦, 专业PCB打样工厂, 24小時**のNJ4AL**</u>VCH16269 12-BIT TO 24-BIT REGISTERED BUS EXCHANGER WITH 3-STATE OUTPUTS

SCES019I – JULY 1995 – REVISED SEPTEMBER 1999

- Member of the Texas Instruments Widebus[™] Family
- *EPIC* ™ (Enhanced-Performance Implanted CMOS) Submicron Process
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Package Options Include Plastic Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages

description

This 12-bit to 24-bit registered bus exchanger is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74ALVCH16269 is used in applications in which two separate ports must be multiplexed onto, or demultiplexed from, a single port. The device is particularly suitable as an interface between synchronous DRAMs and high-speed microprocessors.

Data is stored in the internal B-port registers on the low-to-high transition of the clock (CLK) input when the appropriate clock-enable (CLKENA) inputs are low. Proper control of these inputs allows two sequential 12-bit words to be presented as a 24-bit word on the B port. For data transfer in the B-to-A direction, a single storage

SCES019I	– JULY 1	995 -	- REVISED SEPTEMB
	or dl f (top vi		
OEA [OEB1 [1 2		OEB2
2B3			
GND		100	2B4
2B2			
2B2 [2B1 [5 6		2B5 2B6
V _{CC}		50	
A1	4		V _{CC} 2B7
A2			2B8
A2 L			2B9
GND			
A4 [2B10
A5			2B11
A6 [2B12
A7 [- 10 a	1B12
A8 [1B11
A9 [1B10
GND			GND
A10	19		1B9
A11 [20	37	1B8
A12	21] 1B7
V _{CC} [22	35	V _{CC}
1B1 [23	34	
1B2	24	33	1B5
GND [25	32	GND
1B3 [26	31] 1B4
NC [27	30	CLKENA1
SEL [28	29]clk

NC - No internal connection

register is provided. The select (SEL) line selects 1B or 2B data for the A outputs. The register on the A output permits the fastest possible data transfer, extending the period during which the data is valid on the bus. The control terminals are registered so that all transactions are synchronous with CLK. Data flow is controlled by the active-low output enables (OEA, OEB1, OEB2).

To ensure the high-impedance state during power up or power down, a clock pulse should be applied as soon as possible, and \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Due to \overline{OE} being routed through a register, the active state of the outputs cannot be determined before the arrival of the first clock pulse.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH16269 is characterized for operation from –40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Cand Widebus are trademarks of Texas Instruments Incorporated

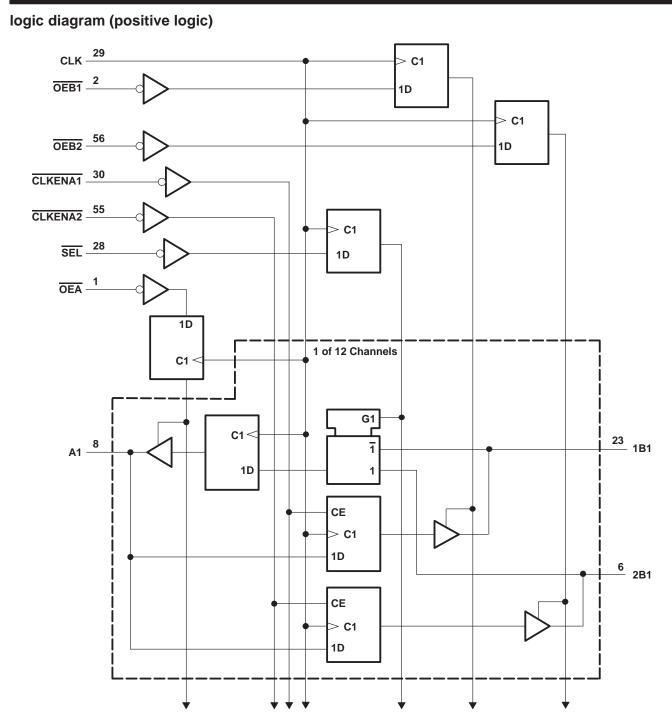
Function Tables

OUTPUT ENABLE

	INPUTS	OUTPUTS			
CLK	OEA	OEB	Α	1B, 2B	
↑	Н	Н	Z	Z	
↑	Н	L	Z	Active	
↑	L	Н	Active	Z	
\uparrow	L	L	Active	Active	

A-TO<u>-B S</u>TORAGE (OEB = L)

	INPUTS			OUTI	PUTS
CLKENA1	CLKENA2	CLK	Α	1B	2B
L	Н	\uparrow	L	L	2B0†
L	Н	\uparrow	Н	Н	2B0†
L	L	\uparrow	L	L	L
L	L	\uparrow	Н	н	Н
н	L	\uparrow	L	1B0 [†]	L
н	L	\uparrow	Н	1B0 [†]	Н
н	Н	Х	Х	1B0 [†]	2B0†


[†]Output level before the indicated steady-state input conditions were established

				,
	OUTPUT			
CLK	SEL	1B	2B	A
Х	Н	Х	Х	A0 [†]
х	L	Х	Х	A ₀ † A ₀ †
\uparrow	Н	L	Х	L
\uparrow	Н	Н	Х	н
\uparrow	L	Х	L	L
\uparrow	L	Х	Н	н

B-TO-A STORAGE ($\overline{OEA} = L$)

[†] Output level before the indicated steady-state input conditions were established

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	-0.5 V to 4.6 V
Input voltage range, VI: Except I/O ports (see Note 1)	-0.5 V to 4.6 V
I/O ports (see Notes 1 and 2)	to V _{CC} + 0.5 V
Output voltage range, V _O (see Notes 1 and 2)0.5 V t	to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, I _O	
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 3): DGG package	
DGV package	
DL package	
Storage temperature range, T _{stg} –	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. This value is limited to 4.6 V maximum.

3. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
VCC	Supply voltage		1.65	3.6	V	
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$			
VIH	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		V	
	V _{IL} Low-level input voltage V _I Input voltage V _O Output voltage	$V_{CC} = 2.7 V \text{ to } 3.6 V$	2			
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$		
VIL		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V	
		$V_{CC} = 2.7 V \text{ to } 3.6 V$		0.8		
VI	Input voltage		0	VCC	V	
VO	Output voltage		0	VCC	V	
		V _{CC} = 1.65 V		-4		
1		V _{CC} = 2.3 V		-12		
ЮН	VIL Low-level input voltage VI Input voltage VO Output voltage IOH High-level output current IOL Low-level output current	V _{CC} = 2.7 V		-12	mA	
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ $V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$ $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$ $V_{CC} = 2.3 \text{ V}$ $V_{CC} = 2.3 \text{ V}$ $V_{CC} = 2.7 \text{ V}$ $V_{CC} = 3 \text{ V}$ $V_{CC} = 1.65 \text{ V}$ $V_{CC} = 2.7 \text{ V}$ $V_{CC} = 3 \text{ V}$ $V_{CC} = 2.3 \text{ V}$ $V_{CC} = 2.3 \text{ V}$ $V_{CC} = 2.3 \text{ V}$ $V_{CC} = 3 \text{ V}$		-24		
		V _{CC} = 1.65 V		4		
		V _{CC} = 2.3 V		12		
IOL Low-leve	Low-level output current	V _{CC} = 2.7 V		12	mA	
				24	1	
$\Delta t/\Delta v$	Input transition rise or fall rate	•		10	ns/V	
TA	Operating free-air temperature		-40	85	°C	

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

PARAMETE	R	TEST CONI	DITIONS	Vcc	MIN	түр†	MAX	UNIT
		I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} -0.2	2		
V _{OH}		I _{OH} = -4 mA		1.65 V	1.2			
		I _{OH} =6 mA		2.3 V	2			
VOH				2.3 V	1.7			V
		I _{OH} = -12 mA		2.7 V	2.2			
				3 V	2.4			
V_{OH} V_{OH} $I_{OH} = -4 \text{ mA}$ $I_{OH} = -4 \text{ mA}$ $I_{OH} = -6 \text{ mA}$ $I_{OH} = -6 \text{ mA}$ $I_{OH} = -12 \text{ mA}$ $I_{OH} = -12 \text{ mA}$ $I_{OH} = -24 \text{ mA}$ $I_{OH} = -24 \text{ mA}$ $I_{OL} = 100 \text{ µA}$ $I_{OL} = 100 \text{ µA}$ $I_{OL} = 4 \text{ mA}$ $I_{OL} = 6 \text{ mA}$ $I_{OH} = -23 \text{ V}$	2							
		I _{OL} = 100 μA		1.65 V to 3.6 V			0.2	
VOL		I _{OL} = 4 mA		1.65 V			0.45	
		I _{OL} = 6 mA	2.3 V			0.4	V	
		1	2.3 V			0.7	V	
		IOL = 12 mA	2.7 V			0.4		
		I _{OL} = 24 mA	3 V			0.55		
lį		VI = V _{CC} or GND		3.6 V			±5	μΑ
		V _I = 0.58 V		1.65 V	25			
		V _I = 1.07 V		1.65 V	-25			
		V _I = 0.7 V		2.3 V	45			
V _{OL} I _I I _I (hold) I _{OZ} § I _{CC} AI _{CC}	V _I = 1.7 V		2.3 V	-45			μΑ	
()		V _I = 0.8 V		3 V	75			
		V _I = 2 V		3 V	-75			
		$V_{\rm I} = 0 \text{ to } 3.6 \text{ V}^{\ddagger}$		3.6 V			±500	
loz§		V _O = V _{CC} or GND		3.6 V			±10	μA
		$V_{I} = V_{CC}$ or GND, I_{C}) = 0	3.6 V		0	40	μA
			ther inputs at V _{CC} or GND	3 V to 3.6 V			750	μA
	inputs	$V_{I} = V_{CC} \text{ or } GND$		3.3 V		3.5		pF
C _{io} A or B p	-	$V_{O} = V_{CC}$ or GND		3.3 V		9		pF

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. [‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. § For I/O ports, the parameter IOZ includes the input leakage current.

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

			V _{CC} = 1.8 V		V _{CC} = 2.5 V ± 0.2 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock freque	ncy		†		135		135		135	MHz
tw	Pulse duration	on, CLK high or low	†		3.3		3.3		3.3		ns
t _{su} Setup tim		A data before CLK↑	†		2		2		1.7		
	Setup time	B data before CLK↑	†		2.2		2.1		1.8		
		SEL before CLK1	†		1.6		1.6		1.3		ns
		CLKENA1 or CLKENA2 before CLK1	†		1		1.2		0.9		
		OE before CLK↑	†		1.5		1.6		1.3		
		A data after CLK↑	†		0.7		0.6		0.6		
		B data after CLK↑	†		0.7		0.6		0.6		
t _h	Hold time	SEL after CLK↑	†		1.1		0.7		0.7		ns
		CLKENA1 or CLKENA2 after CLK↑	†		1		0.8		1.1		
		OE after CLK↑	†		0.8		0.8		0.8		

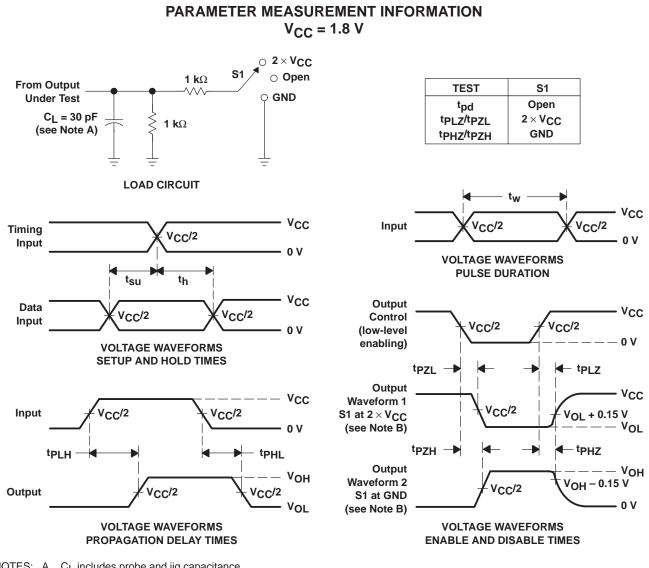
[†] This information was not available at the time of publication.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =	1.8 V	= ۷ _{CC} ± 0.2	2.5 V 2 V	V _{CC} =	2.7 V	V _{CC} = ± 0.3	3.3 V 3 V	UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fmax			†		135		135		135		MHz
• .	CLK	В		†	1	8.2		7.3	1	6.2	ns
^t pd	CLK	A		†	1	6.4		5.8	1	5	115
	CLK	В		†	1	7.9		6.7	1	6.1	
ten		A		†	1	7.6		6.2	1	5.9	ns
4	0.17	В		†	1	8.1		6.9	1	6.1	20
^t dis	CLK	A		†	1	7.5		6.8	1	5.6	ns

[†] This information was not available at the time of publication.

operating characteristics, $T_A = 25^{\circ}C$


	PARAMETE	TEST CONDITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT	
		n.		TYP	TYP	ТҮР	ÖNIT
	Power dissipation	All outputs enabled	C _I = 50 pF, f = 10 MHz	†	87	120	рF
Cpd	capacitance per exchanger	All outputs disabled	C _L = 50 pF, f = 10 MHz	†	80.5	118	μr

[†] This information was not available at the time of publication.

SN74ALVCH16269 **12-BIT TO 24-BIT REGISTERED BUS EXCHANGER** WITH 3-STATE OUTPU TS

SCES019I – JULY 1995 – REVISED SEPTEMBER 1999

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 1. Load Circuit and Voltage Waveforms

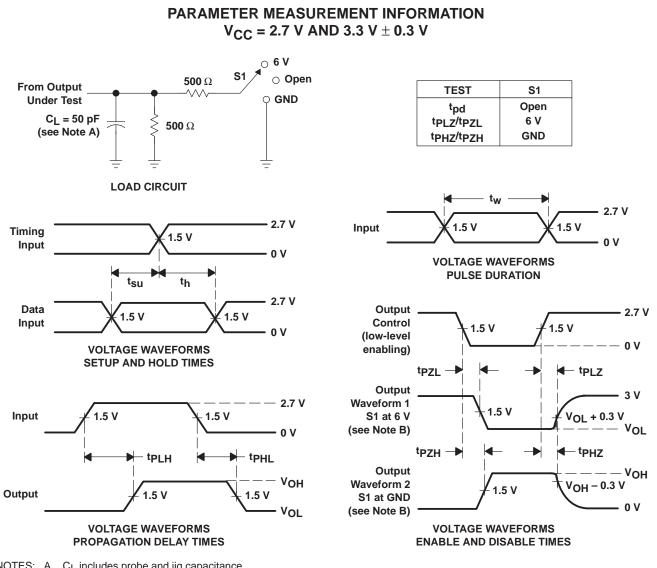
SN74ALVCH16269 12-BIT TO 24-BIT REGISTERED BUS EXCHANGER WITH 3-STATE OUTPUTS

SCES019I – JULY 1995 – REVISED SEPTEMBER 1999

NOTES: A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.

D. The outputs are measured one at a time with one transition per measurement.


- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. tpLH and tpHL are the same as tpd.

SN74ALVCH16269 **12-BIT TO 24-BIT REGISTERED BUS EXCHANGER** WITH 3-STATE OUTPUTS

SCES019I – JULY 1995 – REVISED SEPTEMBER 1999

NOTES: A. CI includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_Q = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpl 7 and tpHZ are the same as tdis.
- F. tp71 and tp7H are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 3. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated