FEATURES

Precision Supply Voltage Monitor ＋5 V，＋3．3 V，＋3 V Power Supply Monitor
$35 \mu \mathrm{~A}$ Quiescent Current
140 ms（min）Power－On Reset Pulse
Low Cost
8－Pin DIP／SO Packages
Upgrade for MAX709

APPLICATIONS

Microprocessor Systems
Computers
Controllers
Intelligent Instruments
Critical $\mu \mathrm{P}$ Monitoring
Automotive Systems
Critical μ P Power Monitoring

GENERAL DESCRIPTION

The ADM709 contains a power supply monitor which generates a system reset during power－up，power－down and brownout conditions．When V_{CC} falls below the reset threshold，$\overline{\text { RESET }}$ goes low and holds the $\mu \mathrm{P}$ in reset．On power－up the $\overline{\mathrm{RESET}}$ output is held low for 140 ms after V_{CC} rises above the thresh－ old．The $\overline{\operatorname{RESET}}$ output remains operational with V_{CC} as low as 1 V ．

Three supply－voltage threshold levels are available suitable for $+5 \mathrm{~V},+3.3 \mathrm{~V}$ and for +3 V supply monitoring．The actual reset voltage threshold is given below．
The ADM709 is available in 8－pin DIP and SOIC packages．
Table I．Reset Threshold

Suffix	Voltage（V）
L	4.65
M	4.40
T	3.08
S	2.93
R	2.63

FUNCTIONAL BLOCK DIAGRAM

Typical Operating Circuit
ORDERING GUIDE

Model	Reset Threshold	Temperature Range	Package Option
ADM709LAN	4.65 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-8$
ADM709LAR	4.65 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO－8
ADM709MAN	4.40 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-8$
ADM709MAR	4.40 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO－8
ADM709TAN	3.08 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-8$
ADM709TAR	3.08 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO－8
ADM709SAN	2.93 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-8$
ADM709SAR	2.93 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO－8
ADM709RAN	2.63 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-8$
ADM709RAR	2.63 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO－8

${ }^{\mathrm{N}} \mathrm{N}=$ Plastic DIP；SO＝SOIC．

Parameter	Min	Typ	Max	Units	Test Conditions/Comments
$\mathrm{V}_{\text {CC }}$ Operating Voltage Range	1.0		5.5	V	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	1.2		5.5	V	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Current		35	85	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}<3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
		35	110	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}<3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
		65	150	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}<5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
		65	200	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}<5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Reset Threshold	4.5	4.65	4.75	V	ADM709L
	4.25	4.40	4.50	V	ADM709M
	3.00	3.08	3.15	V	ADM709T
	2.85	2.93	3.00	V	ADM709S
	2.55	2.63	2.70	V	ADM709R
V_{CC} to $\overline{\mathrm{RESET}}$ Delay		20		$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{CC}}=$ Reset Threshold max-min
$\overline{\text { RESET }}$ Active Time-Out Period	140	280	380	ms	$\mathrm{V}_{\mathrm{CC}}=$ Reset Threshold max, $\mathrm{V}_{\text {CC }}$ Rising
$\overline{\text { RESET Output Voltage }}$			0.3	V	ADM709R/S/T, $\mathrm{I}_{\text {SINK }}=1.2 \mathrm{~mA} . \mathrm{V}_{\mathrm{CC}}=$ Reset Threshold min
			0.4	V	ADM709L/M, $\mathrm{I}_{\mathrm{SINK}}=3.2 \mathrm{~mA} . \mathrm{V}_{\mathrm{CC}}=$ Reset Threshold min
			0.3	V	$\mathrm{I}_{\text {SINK }}=50 \mu \mathrm{~A} . \mathrm{V}_{\mathrm{CC}} \geq 1.0 \mathrm{~V}$
			0.4	V	$\mathrm{I}_{\text {SINK }}=100 \mu \mathrm{~A} . \mathrm{V}_{\text {CC }} \geq 1.2 \mathrm{~V}$
	$0.8 \times \mathrm{V}_{\mathrm{CC}}$			V	ADM709R/S/T, $\mathrm{I}_{\text {SOURCE }}=500 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}} \geq$ Reset Threshold max
	$\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$			V	ADM709L/M, $\mathrm{I}_{\text {SOURCE }}=800 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}} \geq$ Reset Threshold max

Specifications subject to change without notice.

PIN FUNCTION DESCRIPTION

Mnemonic	Pin No.	Function
NC	$1,4,5,6,8$	No Connect Pins.
V_{CC}	2	$+5 \mathrm{~V},+3.3 \mathrm{~V},+3$ V Power Supply Input.
$\overline{\text { RESET }}$	7	Logic Output. It remains low while V $_{\mathrm{CC}}$ is below the reset threshold voltage and for 280 ms (typ) after V
GND	3	Ground, 0 V.

PIN CONFIGURATION

ADM709

Figure 1. Functional Block Diagram

Figure 2. Typical Operating Circuit

CIRCUIT INFORMATION

RESET Output

RESET is an active low output which provides a reset signal to the microprocessor whenever the V_{CC} supply voltage is below the reset threshold. An internal timer holds RESET low for 140 ms after the voltage on V_{CC} rises above the threshold. This is intended as a power-on reset signal for the processor. It allows time for the power supply and microprocessor to stabilize after power up. Similarly a power supply brownout will initiate a processor reset. On power-down, the RESET output remains low with V_{CC} as low as 1 V . This ensures that the microprocessor is held in a stable shutdown condition as the power supply drops.

Figure 3. Power Off/On $\overline{\text { RESET Timing }}$

Figure 4. $\overline{R E S E T}$ Output vs. $V_{C C}$

RESET at Voltages < 1 V

The ADM709 RESET output is guaranteed to operate with supply voltages as low as 1 V . If it is desired that the $\overline{\text { RESET }}$ output remains low below 1 V , then a pull-down resistor should be connected between the $\overline{\text { RESET }}$ output and GND. A resistor of $100 \mathrm{k} \Omega$ is suitable. This is illustrated in Figure 5.

Figure 5. $\overline{R E S E T}$ Valid @ $V_{C C}<1$ V

Glitch Immunity

The ADM709 is immune to short transients which may occur on the V_{CC} line. This is important so that spurious resets are not generated as a result of minor glitches on the power supply.

Additional glitch immunity may be obtained by connecting a capacitor ($0.1 \mu \mathrm{~F}$ or greater) as close as possible to the V_{CC} pin on the device.

Microprocessors with Bidirectional I-O

Some microprocessors or microcontrollers such as the MC 68 HC 11 have bidirectional reset lines. In order to avoid signal contention, a resistor of $4.7 \mathrm{k} \Omega$ should be connected between the ADM709 $\overline{\text { RESET }}$ output and the microcontroller $\overline{\text { RESET }}$ line. This arrangement is shown in Figure 6.

Figure 6. Interfacing to Microprocessors with Bidirectional RESET

ADM709

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

8-Lead Plastic DIP

($\mathrm{N}-8$)

8-Lead SOIC
 (SO-8)

