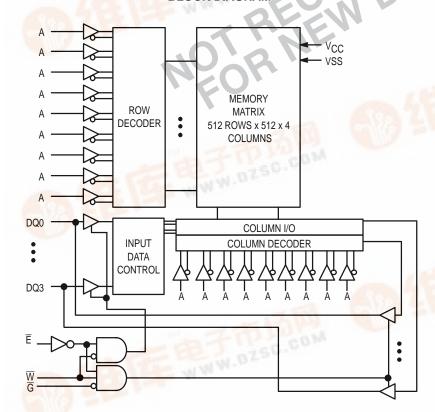
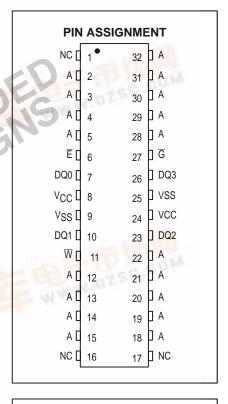
256K x 4 Bit Fast Static Random Access Memory


The MCM6729 is a 1,048,576 bit static random access memory organized as 262,144 words of 4 bits. This device is fabricated using high performance silicongate BiCMOS technology. Static design eliminates the need for external clocks or timing strobes.

Output enable (\overline{G}) is a special control feature that provides increased system flexibility and eliminates bus contention problems.

This device meets JEDEC standards for functionality and revolutionary pinout, and is available in a 400 mil plastic small—outline J—leaded package.


- Single 5 V ± 10% Power Supply
- Fully Static No Clock or Timing Strobes Necessary
- All Inputs and Outputs Are TTL Compatible
- Three State Outputs
- Fast Access Times: 10, 12 ns
- · Center Power and I/O Pins for Reduced Noise

BLOCK DIAGRAM

MCM6729

PIN NAMES
A0 - A17 Address Input E Chip Enable W Write Enable G Output Enable DQ0 - DQ3 Data Input/Output VCC + 5 V Power Supply VSS Ground NC No Connection

TRUTH TABLE (X = Don't Care)

Ē	G	W	Mode	V _{CC} Current	Output	Cycle
Н	Х	Х	Not Selected	I _{SB1} , I _{SB2}	High–Z	_
L	Н	Н	Output Disabled	ICCA	High–Z	_
L	L	Н	Read	ICCA	D _{out}	Read Cycle
L	Х	L	Write	ICCA	High-Z	Write Cycle

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	- 0.5 to + 7.0	V
Voltage Relative to V_{SS} for Any Pin Except V_{CC}	V _{in} , V _{out}	- 0.5 to V _{CC} + 0.5	V
Output Current	l _{out}	±30	mA
Power Dissipation	PD	1.2	W
Temperature Under Bias	T _{bias}	- 10 to + 85	°C
Operating Temperature	TA	0 to + 70	°C
Storage Temperature — Plastic	T _{stg}	– 55 to + 125	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPER-ATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to these high-impedance circuits.

This BiCMOS memory circuit has been designed to meet the dc and ac specifications shown in the tables, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow of at least 500 linear feet per minute is maintained.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(VCC = 5.0 V \pm 10%, TA = 0 to 70°C, Unless Otherwise Noted)

RECOMMENDED OPERATING CONDITIONS

			_		
Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage (Operating Voltage Range)	VCC	4.5	5.0	5.5	V
Input High Voltage	VIH	2.2	_	V _{CC} + 0.3**	V
Input Low Voltage	V _{IL}	- 0.5*	_	0.8	V

DC CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
Input Leakage Current (All Inputs, V _{in} = 0 to V _{CC})	l _{lkg(l)}	_	± 1.0	μΑ
Output Leakage Current ($\overline{E} = V_{IH}$, $V_{out} = 0$ to V_{CC})	l _{lkg(O)}	_	± 1.0	μΑ
Output Low Voltage (I _{OL} = + 8.0 mA)	VOL	_	0.4	V
Output High Voltage (I _{OH} = – 4.0 mA)	Voн	2.4	_	V

POWER SUPPLY CURRENTS

Parameter	Symbol	MCM6729-10	MCM6729-12	Unit	Notes
AC Active Supply Current (I _{OUt} = 0 mA) (V _{CC} = max, f = f _{max})	ICCA	165	155	mA	1, 2, 3
Active Quiescent Current ($\overline{E} = V_{IL}$, $V_{CC} = max$, $f = 0$ MHz)	lCC2	90	90	mA	
AC Standby Current ($\overline{E} = V_{IH}$, $V_{CC} = max$, $f = f_{max}$)	I _{SB1}	60	60	mA	1, 2, 3
CMOS Standby Current (V_{CC} = max, f = 0 MHz, $\overline{E} \ge V_{CC} - 0.2$ V, $V_{in} \le V_{SS}$ + 0.2 V, or $\ge V_{CC} - 0.2$ V)	I _{SB2}	20	20	mA	

NOTES:

- 1. Reference AC Operating Conditions and Characteristics for input and timing (V_{IH}/V_{IL} , t_{I}/t_{f} , pulse level 0 to 3.0 V, V_{IH} = 3.0 V).
- 2. All addresses transition simultaneously low (LSB) and then high (MSB).
- 3. Data states are all zero.

 $[\]label{eq:VIL} \begin{tabular}{l} *V_{IL} (min) = -0.5 \ V \ dc; \ V_{IL} (min) = -2.0 \ V \ ac \ (pulse \ width \le 2.0 \ ns) \ for \ I \le 20.0 \ mA. \\ **V_{IH} (max) = V_{CC} + 0.3 \ V \ dc; \ V_{IH} \ (max) = V_{CC} + 2 \ V \ ac \ (pulse \ width \le 2.0 \ ns) \ for \ I \le 20.0 \ mA. \\ \end{tabular}$

CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, T_A = 25°C, Periodically Sampled Rather Than 100% Tested)

Parameter	Symbol	Тур	Max	Unit
Address Input Capacitance	C _{in}	_	6	pF
Control Pin Input Capacitance	C _{in}	_	6	pF
Input/Output Capacitance	C _{I/O}	_	8	pF

AC OPERATING CONDITIONS AND CHARACTERISTICS

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, T_A = 0 \text{ to } +70^{\circ}\text{C}, \text{ Unless Otherwise Noted})$

Input Timing Measurement Reference Level 1.5 V	Output Timing Measurement Reference Level 1.5 V
Input Pulse Levels 0 to 3.0 V	Output Load See Figure 1A
Input Rise/Fall Time	

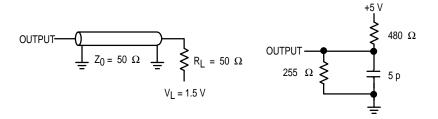
READ CYCLE TIMING (See Notes 1 and 2)

		MCM6729-10		10 MCM6729-12			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Read Cycle Time	†AVAV	10	_	12	_	ns	3
Address Access Time	^t AVQV	_	10	_	12	ns	
Enable Access Time	^t ELQV	_	10	_	12	ns	
Output Enable Access Time	^t GLQV	_	5	_	6	ns	
Output Hold from Address Change	t _A XQX	3	_	3	_	ns	
Enable Low to Output Active	t _{ELQX}	3	_	3	_	ns	4,5,6
Output Enable Low to Output Active	^t GLQX	0	_	0	_	ns	4,5,6
Enable High to Output High–Z	^t EHQZ	0	5	0	6	ns	4,5,6
Output Enable High to Output High–Z	^t GHQZ	0	5	0	6	ns	4,5,6

NOTES:

- 1. W is high for read cycle.
- 2. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.
- 3. All read cycle timings are referenced from the last valid address to the first transitioning address.
- 4. At any given voltage and temperature, tehQZ (max) < telQX (min), and tGHQZ (max) < telQX (min), both for a given device and from device to device.
- 5. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.
- 6. This parameter is sampled and not 100% tested.
- 7. Device is continuously selected ($\overline{E} = V_{IL}$, $\overline{G} = V_{IL}$).
- 8. Addresses valid prior to or coincident with $\overline{\mathsf{E}}$ going low.

AC TEST LOADS



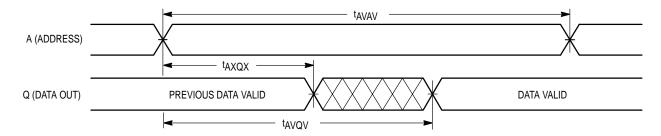
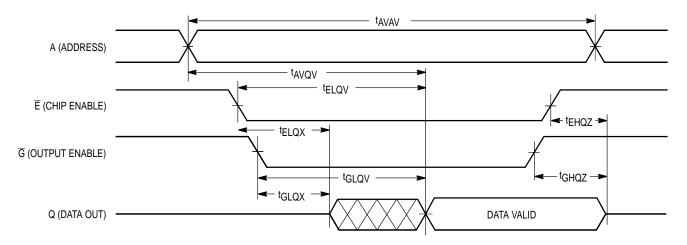

Figure 1A

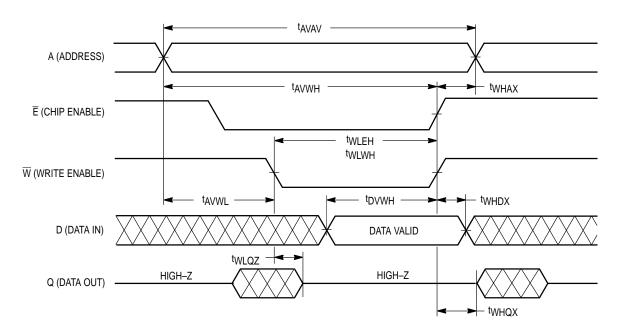
Figure 1B


TIMING LIMITS

The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view. Thus, address setup time is shown as a minimum since the system must supply at least that much time (even though most devices do not require it). On the other hand, responses from the memory are specified from the device point of view. Thus, the access time is shown as a maximum since the device never provides data later than that time.

READ CYCLE 1 (See Note 7)

READ CYCLE 2 (See Note 8)

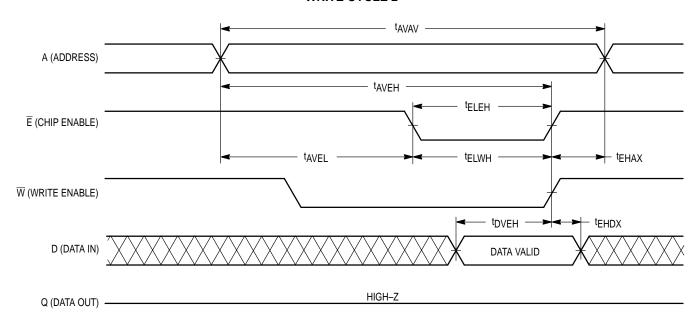

WRITE CYCLE 1 (W Controlled, See Notes 1 and 2)

		MCM6729-10		MCM6729-1		мсм6	729–12		
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes		
Write Cycle Time	^t AVAV	10	_	12	_	ns	3		
Address Setup Time	t _{AVWL}	0	_	0	_	ns			
Address Valid to End of Write	^t AVWH	9	_	10	_	ns			
Address Valid to End of Write, G High	^t AVWH	8	_	9	_	ns			
Write Pulse Width	tWLWH, tWLEH	9	_	10	_	ns			
Write Pulse Width, G High	tWLWH, tWLEH	8	_	9	_	ns			
Data Valid to End of Write	^t DVWH	5	_	6	<u> </u>	ns			
Data Hold Time	^t WHDX	0	_	0	_	ns			
Write Low to Data High–Z	t _{WLQZ}	0	5	0	6	ns	4,5,6		
Write High to Output Active	tWHQX	3	_	3	_	ns	4,5,6		
Write Recovery Time	tWHAX	0	_	0	l —	ns			

NOTES:

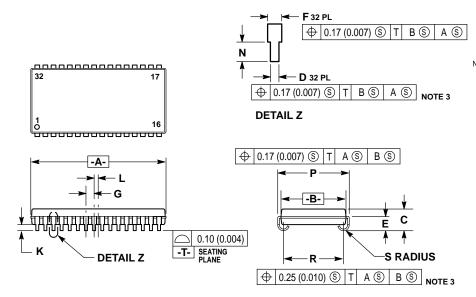
- 1. A write occurs during the overlap of \overline{E} low and \overline{W} low.
- 2. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.
- 3. All write cycle timings are referenced from the last valid address to the first transitioning address.
- 4. Transition is measured 200 mV from steady-state voltage with load of Figure 1B.
- 5. This parameter is sampled and not 100% tested.
- 6. At any given voltage and temperature, t_{WLQZ} max < t_{WHQX} min both for a given device and from device to device.

WRITE CYCLE 1


WRITE CYCLE 2 ($\overline{\mathbb{E}}$ Controlled, See Notes 1 and 2)

	MCM6729-10 MCM6729-12	MCM6729-10		MCM6729-		MCM6729-10 MCF			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes		
Write Cycle Time	†AVAV	10	_	12	_	ns	3		
Address Setup Time	t _{AVEL}	0	_	0	_	ns			
Address Valid to End of Write	t _{AVEH}	8	_	9	_	ns			
Enable to End of Write	t _{ELEH} , t _{ELWH}	8	_	9	_	ns	4,5		
Data Valid to End of Write	^t DVEH	5	_	6	_	ns			
Data Hold Time	^t EHDX	0	_	0	_	ns			
Write Recovery Time	^t EHAX	0	_	0	_	ns			

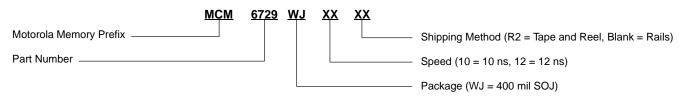
NOTES:


- 1. A write occurs during the overlap of $\overline{\mathsf{E}}$ low and $\overline{\mathsf{W}}$ low.
- 2. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycles.
- 3. All write cycle timings are referenced from the last valid address to the first transitioning address.
- 4. If \overline{E} goes low coincident with or after \overline{W} goes low, the output will remain in a high impedance condition.
- 5. If \overline{E} goes high coincident with or before $\overline{\overline{W}}$ goes high, the output will remain in a high impedance condition.

WRITE CYCLE 2

PACKAGE DIMENSIONS

32-LEAD 400 MIL SOJ CASE 857A-02



NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 Y14 5M 1982
- CONTROLLING DIMENSION: INCH.
- TO BE DETERMINED AT PLANE -T-.
 DIMENSION A & B DO NOT INCLUDE MOLD PROTRUSION. MOLD PROTRUSION SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- DIMENSION A & B INCLUDE MOLD MISMATCH AND ARE DETERMINED AT THE PARTING LINE.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.820	0.830	20.83	21.08
В	0.395	0.405	10.03	10.29
С	0.128	0.148	3.26	3.75
D	0.016	0.020	0.41	0.50
E	0.088	0.098	2.24	2.48
F	0.026	0.032	0.67	0.81
G	0.050	BSC	1.27	BSC
K	0.035	0.045	0.89	1.14
L	0.025	BSC	0.64	BSC
N	0.030	0.045	0.76	1.14
Р	0.435	0.445	11.05	11.30
R	0.365	0.375	9.27	9.52
S	0.030	0.040	0.77	1.01

ORDERING INFORMATION (Order by Full Part Number)

Full Part Numbers — MCM6729WJ10 MCM6729WJ10R2 MCM6729WJ12 MCM6729WJ12R2

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and "a" are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4–32–1, Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

