TDA 5660 P Modulator for TV, Video and Sound Signals

The monolithically integrated circuit TDA 5660 P is especially suitable as modulator for the 48 to 860 MHz frequency range and is applied e.g. in video recorders, cable converters, TV converter installations, demodulators, video generators, video security systems, amateur TV applications, as well as personal computers.

- Synchronizing level-clamping circuit
- Peak white value gain control
- Continuous adjustment of modulation index for positive and negative modulation
- Dynamic residual carrier setting
- FM sound modulator
- AM sound modulator
- Picture carrier to sound carrier adjustment
- Symmetrical mixer output
- Symmetrical oscillator with own RF ground
- Low radiation
- Superior frequency stability of main oscillator
- Superior frequency stability of sound oscillator
- Internal reference voltage

Circuit description

lf.dzsc.com

Via pin 1, the sound signal is capacitively coupled to the AF input for the FM modulation of the oscillator. An external circuitry sets the preemphasis. This signal is forwarded to a mixer which is influenced by the AM modulation input of pin 16. The picture to sound carrier ratio can be changed by connecting an external voltage to pin 16, which deviates from the internal reference voltage. In case, the sound carrier should not be FM but AM modulated, pin 1 should be connected to pin 2, while the AF signal is capacitively coupled to pin 16. Through an additional external dc voltage at pin 16, the set AM modulation index can be changed by overriding the internally adjusted control voltage for a fixed AM modulation index. At the output of the above described mixer the FM and/or AM modulated sound signal is added to the video signal and mixed with the oscillator signal in the RF mixer. A parallel resonant circuit is connected to the sound carrier oscillator at pin 17, 18. The unloaded Q of the resonant circuit must be Q=25 and the parallel resistor $R_T=6.8~\mathrm{k}\Omega$ to ensure a picture to sound carrier ratio of 12.5 dB. At the same time, the capacitative and/or inductive reactance for the resonance frequency should have a value of $X_C\approx X_L\approx 800~\Omega$.

The video signal with the negative synchronous level is capacitively connected to pin 10. The internal clamping circuit is referenced to the synchronizing level. Should the video signal change by 6 dB, this change will be compensated by the resonant circuit which is set to the peak white value. At pin 11, the current pulses of the peak white detector are tiltered through the capacitor which also determines the control time constant. When pin 12 is connected to ground, the RF carrier switches from negative to positive video modulation.

7

With the variable resistor of $R=\infty$0 Ω at pin 12, the modulation depth, beginning with $R=\infty$ and a negative modulation of $m_{\text{D/N}}=80\%$, can be increased to $m_{\text{D/N}}=100\%$ and continued with a positive modulation of $m_{\text{D/P}}=100\%$ down to $m_{\text{D/P}}=88\%$ with R=0 Ω . The internal reference voltage has to be capacitively blocked at pin 2.

The amplifier of the RF oscillator is available at pins 3-7. The oscillator operates as a symmetrical ECO circuit. The capacitive reactance for the resonance frequency should be $X_{\rm C}\approx 70~\Omega$ between pins 3, 4 and 6, 7 and $X_{\rm C}\approx 26~\Omega$ between pins 4, 6. In order to set the required residual carrier suppression, pin 9 is used to compensate for any dynamic asymmetry of the RF mixer during high frequencies of > 300 MHz. The oscillator chip ground, pin 5, should be connected to ground at the oscillator resonant circuit shielding. Via pin 3 and 7 an external oscillator signal can be injected inductively or capacitively. The peripheral layout of the pc board should be provided with a minimum shielding attenuation of approx. 80 dB between the oscillator pins 3-7 and the modulator outputs 13-15.

For optimum residual carrier suppression, the symmetric mixer outputs at pins 13, 15 should be connected to a matched balanced-to-unbalanced broadband transformer with excellent phase precision at 0 and 180 degrees, e.g. a Guanella transformer. The transmission loss should be less than 3 dB. In addition, an LC low pass filter combination is required at the output. The cut-off frequency of the low pass filter combination must exceed the maximum operating frequency.

If the application circuit according to figure 1, 2 is used, a multiplication factor V/RF (application) = V/RF (data sheet) 3.9 must be used to convert a 300 Ω symmetrical impedance to an asymmetrical impedance of 75 Ω for the stated RF output voltage $V_{\rm q}$ of the type specification in order to ensure a transmission attenuation of 0 dB for the balanced-to-unbalanced mixer.

Maximum ratings

	·	min	max		Remarks
Supply voltage	Vs	-0.3	14.5	V	
Current from pin 2	$-I_2$	0	2	mA	$V_2 = 7 \text{ to } 8 \text{ V}$
Voltage at pin 1	17	1,,	1, 10	\ ,,	$V_{\rm S} = 9.5 \text{ to } 13.5 \text{ V}$
Voltage at pin 9	V ₁ V ₉	V ₂ -2	V ₂ +2	V	$V_{\rm S} = 9.5 \text{ to } 13.5 \text{ V}$
Voltage at pin 10	V _{10 pp}	7	1.5	v	only via C (max. 1 μF)
Capacitance at pin 2	C ₂	0	100	nF	
Capacitance at pin 11	C ₁₁	· 0	15	μF	
Voltage at pin 12	V ₁₂	-0.3	1.4	v	
Voltage at pin 13	V ₁₃	V ₂	V _s	l v	
Voltage at pin 15	V ₁₅	V ₂	V _S	V	
Voltage at pin 16	<i>V</i> ₁₆	V ₂ -1.5	$V_2 + 1.5$	V	$V_{\rm S} = 9.5 \text{ to } 13.5 \text{ V}$
Only the external circuitry shown in application circuits 1 and 2 may be connected to pins 3, 4, 6, 7, 17 and 18					
Junction temperature	$ au_i$		150	°C	
Storage temperature	$\dot{\mathcal{T}}_{stg}$	-40	125	°C	
Thermal resistance (system-air)	R _{th SA}	ľ	80	K/W	
Operating range					
Supply voltage	V _S	9.5	13.5	v	1
Video input frequency	f _{VIDEO}	0	5	MHz	
Sound input frequency	f _{AF}	0	20	kHz	
Output frequency	$f_{\mathbf{q}}^{m}$	48	860	MHz	depending on the oscillator circuitry at pins 3-7
Ambient temperature	T_{A}	0	70	°C	:
Sound oscillator	fosc	4	7	MHz	
Voltage at pin 13, 15	V _{13.15}	V ₂	V _S	V	1

Characteristics							
$V_{\rm S} = 11 \text{ V}; T_{\rm A} = 25 ^{\circ}\text{C}$	1	Test conditions	Figure	min	typ	max	
Current consumption Reference voltage Oscillator frequency range	I ₈ V ₂ f _{OSC}	$I_2 = 0 \text{ mA}$ $0 \le I_2 \le 1 \text{ mA}$ External circuitry adjusted to frequency	1;2 1;2	22 7 48	30 7.5	40 8 860	mA V MHz
Turn-on start-up drift	Δf _{OSC}	TC value of capacitor in osc. circuit is 0; drift is referenced only to self-heating of the component $t = 0.5$ -10 s;					
		<i>T</i> _A = const. Ch 30 Ch 40	1; 2 1; 2	0	-50 -200	-500 -500	kHz kHz
Frequency drift as function of V_S	-∆f _{osc}	$V_S = 9.5-13.5 \text{ V}$ $T_A = \text{const.}$ Ch 40	1;2	0 -150		150	kHz
Video input current	$-I_{10}$	C ₁₀ ≤1 μF	5	0		10	μΑ
at pin 10 Video input voltage at pin 10	V _{10 pp}	at coupling capac. C≤1 µF I _{leak} ≤ ±0.3 µA	21; 22	0.7		1.4	V
Modulation depth	$m_{D/N}$	neg. mod.	1; 16	75 83	80 88	85 93	%
V _{VIDEO pp} = 1 V; f _{VIDEO} = 200 kHz sine signal	m _{D/P}	pos. mod.	2; 16		80	33	
Output impedance RF output voltage Modulation signal in neg. modulation pin 12 open	Z_{13} ; Z_{15} $V_{q rms}$	static Ch 40	24 1b	10 2.5	3.5	5.5	kΩ mV
Output capacitance	C ₁₃ -C ₁₅		25	0.5	1	2.0	pF
S parameter at pins			26				
3, 4 and 6, 7 RF output phase RF output voltage change; adjustment	$rac{lpha_{13,15}}{arDelta V_{ m q}}$	f = 543.25-623.25 Δf = 80 MHz		140	180	220	degrees
range		Ch 30-Ch 40	1	0		1.5	dB
RF output voltage change RF output voltage change Oscillator interference FM caused by AM modulation coupling of the modulator output with the oscillator resonant circuit; VVIDEO pp = 1 V;		f = 100-300 MHz f = 48-100 MHz	6	0		1.5 1.5	dB dB
f _{VIDEO} = 10 kHz; sine signa	Ch 30		1; 9	0	5	15	kHz
	Ch 40		1;9	0	7	21	kHz

in the contract of the property of the contract of the companion of the contract of the contra

Characteristics					1-4	'S	
$V_{\rm S} = 11 \text{ V}; T_{\rm A} = 25 ^{\circ}\text{C}$		Test conditions	Figure	min	typ	max	
Intermodulation ratio Harmonic wave ratio	a _{MR} a _H	f _P +1.07 MHz f _P +8.8 MHz without video signal 19, 20, 21 unmodulated video and sound carrier,	1; 7; 15 1; 7; 15		75		dB dB
		measured with the spectrum analyzer as difference between video carrier signal level and sideband signal level without	¥6				
		video and sound modulation.					
Harmonic wave ratio	a _H a _H	$f_{\rm P}+2f_{\rm S}$ $f_{\rm P}+3f_{\rm S}$ $V_{\rm q}$ with spectrum analyzer; loaded Q factor $Q_{\rm L}$ of the sound oscillator resonant circuit adjusted by $R_{\rm S}$ to provide the	1; 7	35 42	48 48		dB dB
		required picture to sound carrier ratio of 12.5 dB; $R_S = 6.8 \text{ k}\Omega$; $Q_U = 25$ of the sound oscillator circuit.					
Sound carrier ratio Color picture to sound carrier ratio	a _{P/S} a _P	f _P +4.4 MHz (dependent on video signal)	1; 7; 17 1	10	12.5 17	15	dB dB
All remaining harmonic waves	8	Multiple of fundamental wave of picture carrier, without video signal, measured with spectrum analyzer; $t_{P/S} = 523.25-623.25$ MHz	1	1,5			dB
Amplitude response of the video signal	a _v .	$V_{\text{VIDEO pp}} = 1 \text{ V with additional}$ modulation $f = 15 \text{ kHz} - 5 \text{ MHz}$	1; 13	0	-	1.5	dB
* *		sine signal between black and white					10.0
Residual carrier suppression	a _R	With adjustment at pin 9 Ch 30Ch 40	1; 12	32			
Static mixer balance characteristic	∆V _{13/15}	V_9 adjusted to $\Delta V_{13/15}$ minimum	21; 23	-100	0	+100	m۷
Dynamic mixer balance characteristics	V _{13 rms}	V ₉ adjusted to V _{13.rms}	21; 23		0	10	mV
Stability of set modulation depth	∆m _D	Video input voltage changes with sine signals $f = 0.2$ MHz; $\Delta V_{\text{VIDEO pp}} = 1$ V ± 3 dB; Ch 30Ch 40;			1	±2.5	%
Stability of set modulation depth	Δm_{D}	$V_S = 12 \text{ V}; T_A = \text{const.}$ f = 48100 MHz	6		1	±2.5	%
Stability of set modulation depth	Δm_{D}	f = 100300 MHz	6		2	±4	%
Stability of set modulation depth	Δm_{D}	$T_A = 0-60 ^{\circ}\text{C}; V_S = 12 \text{V}$	1		1	± 2.5	%

Characteristics

 $V_{\rm S} = 11 \text{ V}; T_{\rm A} = 25 \,^{\circ}\text{C}$

	Test conditions	Figure	min	typ	max	
Δm_{D}	$V_{\rm S} = 9.5 - 13; 5 \text{ V};$ $T_{\rm A} = \text{const.}$	1		1.	± 2.5	%
8 8/P	Ch 30Ch 40	1;11	48	60		dB
a _{N/P}	Ch 30Ch 40	1;11	48	74		dB
a _{S/P}	Ch 30Ch 40	1; 11	20	33		dB
a _{P/S}	Ch 39	1a; 8	48	54		dB
a _{P/S}	Ch 39; test picture VU G-Y; U/V	2;8	48	56		dB
	Ch 39; color bar	2:8	46	52		dB
	Ch 39; uniform red level	2:8	48	58		dB
	Ch 39; uniform white level	2:8	45	51		dB
	Ch 39; test pattern	2:8	48	55		dB
	Ch 39; white bar	2:8	46	52		dB
	Ch 39; bar	2:8	45	50.8		dB
	Ch 39; 20T/2T	2:8	43	49		dB
	Ch 39; 30% white level		48	58		dB
	Ch 39; 250 kHz		46	52		dB
	Ch 39; multiburst		46	53		dB
	Ch 39; ramp	, ,	44	50		dB
a _{S/N}		1a; 8	48	54		dB
G _{dif}	measured with measure- ment demodulator, video test signals and vector scope	·1			10	%
Φdif	·	1		ĺ	15	%
.	C at pin 11 =10 μF; I _{leak} ≤2 μA	1		6	50	μs
	8S/P 8N/P 8S/P 8P/S 8P/S	Δm _D V _S = 9.5-13; 5 V; T _A = const. Ch 30Ch 40 a _{N/P} Ch 30Ch 40 a _{S/P} Ch 30Ch 40 a _{P/S} Ch 39 a _{P/S} Ch 39; test picture VU G-Y; U/V Ch 39; color bar Ch 39; uniform red level Ch 39; uniform white level Ch 39; white bar Ch 39; bar Ch 39; 30% white level Ch 39; 250 kHz Ch 39; multiburst Ch 39; ramp a _{S/N} Gdif measured with measurement demodulator, video test signals and vector scope φdif C at pin 11 = 10 μF;	Δm _D V _S = 9.5-13; 5 V; 1 T _A = const. 1;11 a _{N/P} Ch 30Ch 40 1;11 a _{S/P} Ch 30Ch 40 1;11 a _{P/S} Ch 39Ch 40 1;11 a _{P/S} Ch 39 1a;8 a _{P/S} Ch 39; test picture VU 2;8 G-Y; U/V Ch 39; color bar 2;8 Ch 39; color bar 2;8 2;8 Ch 39; uniform red level 2;8 2;8 Ch 39; test pattern 2;8 2;8 Ch 39; bar 2;8 2;8 Ch 39; 20T/2T 2;8 2;8 Ch 39; 30% white level 2;8 2;8 Ch 39; 30% white level 2;8 2;8 Ch 39; multiburst 2;8 2;8 Ch 39; ramp 2;8 1a;8 a _{S/N} 1a;8 1a;8 Gdif measured with measurement demodulator, video test signals and vector scope 1 Qdif C at pin 11 = 10 μF; 1	Δm _D V _S = 9.5-13; 5 V; 1 T _A = const. 1;11 48 a _{N/P} Ch 30Ch 40 1;11 48 a _{S/P} Ch 30Ch 40 1;11 20 a _{P/S} Ch 39 1a; 8 48 a _{P/S} Ch 39; test picture VU 2; 8 48 G-Y; U/V Ch 39; color bar 2; 8 46 Ch 39; uniform red level 2; 8 45 Ch 39; uniform white level 2; 8 45 Ch 39; white bar 2; 8 45 Ch 39; bar 2; 8 45 Ch 39; 207/2T 2; 8 45 Ch 39; 207/2T 2; 8 48 Ch 39; 30% white level 2; 8 46 Ch 39; 30% white level 2; 8 46 Ch 39; multiburst 2; 8 46 Ch 39; ramp 2; 8 46 Ch 39; ramp 1 2; 8 48 48 48 Ch 39; ramp 1 1 a _S /N 1 1 Ch 39; ramp 1 1	Δm _D V _S = 9.5-13; 5 V; 1 1 a _{S/P} Ch 30Ch 40 1; 11 48 60 a _{N/P} Ch 30Ch 40 1; 11 48 74 a _{S/P} Ch 30Ch 40 1; 11 20 33 a _{P/S} Ch 39 1a; 8 48 54 a _{P/S} Ch 39; test picture VU 2; 8 48 56 a _{P/S} Ch 39; test picture VU 2; 8 48 56 a _{P/S} Ch 39; test picture VU 2; 8 48 56 a _{P/S} Ch 39; test picture VU 2; 8 48 56 a _{P/S} Ch 39; color bar 2; 8 46 52 Ch 39; uniform red level 2; 8 45 51 Ch 39; white bar 2; 8 45 51 Ch 39; white bar 2; 8 46 52 Ch 39; 207/2T 2; 8 45 50.8 Ch 39; amiltiburst 2; 8 46 52 Ch 39; multiburst 2; 8 46 52 Ch 39; ramp 2; 8 46 53	Δm _D V _S = 9.5-13; 5 V; 1 1 ± 2.5 a _{S/P} Ch 30Ch 40 1; 11 48 60 a _{N/P} Ch 30Ch 40 1; 11 48 74 a _{S/P} Ch 30Ch 40 1; 11 20 33 a _{P/S} Ch 39 1a; 8 48 54 a _{P/S} Ch 39; test picture VU G-Y; U/V 2; 8 48 56 G-Y; U/V Ch 39; color bar Ch 39; uniform red level Ch 39; uniform white level Ch 39; uniform white level Ch 39; white bar Ch 39; white bar Ch 39; white bar Ch 39; white bar Ch 39; 20T/2T Ch 39; 30% white level Ch 39; 250 kHz Ch 39; 30% white level Ch 39; 30% white level Ch 39; multiburst Ch 39; multiburst Ch 39; ramp 2; 8 46 52 a _{S/N} Gdif measured with measurement demodulator, video test signals and vector scope 1 10 q _{dif} C at pin 11 = 10 μF; 1 15 50

Characteristics

Characteristics							
$V_{\rm S} = 11 \text{ V}; T_{\rm A} = 25 ^{\circ}\text{C}$		Test conditions	Figure	min	typ	max	
Setting time for video signal change from 0 $V_{\rm pp}$ to 1.4 $V_{\rm pp}$	t	Video blanking signal content is uniform white level	1		120	500	μs
Setting time for video blanking signal from 100% white level to 42% grey level with subsequent rise in grey level to 71% of video blanking signal (due to decontrol process)			1		2.25	5	S
Sound oscillator frequency range	f _{S/OSC}	Unloaded Q factor of resonant circuit Q _U = 25; resonance frequency 5.66 MHz		4		7	MHz
Turn-on start-up drift	∆f _{S/OSC}	Capacitor TC value in sound oscillator circuit is 0, drift is based only on component heating. T _A = const.; t _{S/OSC} = 5.5 MHz	1		5	15	kHz
Sound oscillator frequency operating voltage	∆f _{S/OSC}	$V_S = 9.5-13.5 \text{ V};$ $f_{S/OSC} = 5.5 \text{ MHz};$ $T_A = \text{const.}; Q_U = 25$	1		5	15	kHz
FM mod. harmonic distortion Audio preamplifier input impedance (dyn.); FM operation	THD _{FM} Z ₁	V _{1 rms} = 150 mV	19;19a 1	200	0.6	1.5	% kΩ
FM sound modulator, static modulation characteristic	∆f _{S/OSC}		1; 14	±210	±270	± 330	kHz
FM sound modulation characteristic (dynamic)	$\Delta f_{M}/\Delta V_1$		1a; 10a	0.3	0.38	0.46	kHz/ mV
AM sound modulation factor	m	V _{AF} = 0.3 V	2; 3; 4a, b	30	40	50	 %
AM sound modulation harmonic distortion	THD _{AM}	m = 86%; $V_{AF} = 0.64 \text{ V};$ $f_{AF} = 1 \text{ kHz}$	t		0.7	3	 %
AM audio preamplifier input impedance	Z ₁₆		2	25	50	75	kΩ
AM sound modulator input voltage	V _{AF}	m = 90%; $f_{AF} = 1 \text{ kHz}$	2	0.5	0.67	0.84	V

Pin description

Pin	Function	
1	AF input for FM modulation	
2	Internal reference voltage	
3	Symmetrical oscillator input	
4	Symmetrical oscillator output	
5	Oscillator ground	
6	Symmetrical oscillator output	
7	Symmetrical oscillator input	
8	Supply voltage	
9	Dynamic residual carrier adjustment	
10	Video input with clamping	
11	Connection for smoothing capacitor	
	for video control loop	
12	Switch for positive and negative modulation	
	as well as residual carrier control	
13	Symmetrical RF output	
14	Remaining ground of component	
15	Symmetrical RF output	
16	Picture to sound carrier ratio (adjustment and AM sound input))
17	Sound oscillator symmetrical input for tank circuit	,
18	Sound oscillator symmetrical input for tank circuit	

Block diagram

Test and measurement circuit 1 for FM sound carrier and negative video modulation

Figure 1

Test and measurement circuit 1 for FM sound carrier and negative video modulation

Figure 1a

Test and measurement circuit 1 for FM sound carrier and negative video modulation

Figure 1b

Test and measurement circuit 2 for FM sound carrier and negative video modulation

Figure 2

AM sound modulation measurement

Figure 3

AM sound carrier modulation index versus AF input voltage at pin 16

Figure 4 a

AM sound carrier modulation index versus dc voltage offset at pin 16 $V_{\rm AF\,rms}=0.6$ V; $\Delta V_{\rm 16/2}$ (V) = $V_2-V_{\rm 16}$

Measurement circuits

Figure 5

TDA 5660 P Remaining External Circuitry as Fig. 1

Figure 6

7-106

Frequency spectrum above the video carrier, measured at clamp V_{α} with a spectrum analyzer

Figure 7

BT - Video Carrier

FT - Frequency Carrier

TT - Sound Carrier

Description of the measurement configuration to measure the noise voltage, video in sound

Figure 8

Calibration:

A signal of $V_{\rm AF\ rme}$ = 270 mV and f = 0.4 kHz, corresponding to a nominal deviation of 30 kHz, is connected to the sound input, and the demodulated AF reference level at the audio measurement device is defined as 0 dB. No video signal is pending.

Measurement: 1) The AF signal is switched off and the FuBK video signal is connected to the video input with $V_{\text{VIDEO pp}} = 1 \text{ V}$. The audio level in relation to the reference calibration level is measured as ratio $a_{\text{p/s}} = 20 \log (V_{\text{FUBK}}) / (V_{\text{nominal}})$.

 AF and video signal are switched off. The noise ratio in relation to the AF reference calibration level is measured as signal-to-noise ratio a_{S/N}.

Description of the measurement configuration to measure the oscillator interference FM

Figure 9

Description of the measurement configuration to measure the total harmonic distortion during FM operation of the sound carrier

Figure 10

Description of the measurement configuration to measure the total harmonic distortion during FM operation of the sound carrier

Figure 10 a

Description of the measurement configuration to measure the sound and/or noise in video during FM and/or AM sound carrier modulation

Figure 11

Calibration:

AF signals are switched off; video signal is pending at the video input; device to measure modulation set at AM is adjusted to video carrier; filter: 300 Hz...200 kHz; detector (P+P)/2; resulting modulation index is defined as $m_{\rm V}=0$ dB.

Measurement: 1) Measurement of interference product ratio sound in video during FM modulation of the sound carrier: AF signal is connected to FM sound input; video signal is switched off; device to measure modulation is set to AM; filter: 300 Hz...3 kHz; detector: (P+P)/2; a ratio of $a_{S/P} = 20 \log P$

 $m_{V/S}/mV$) is derived from the resulting modulation index $m_{V/S}$.

 Measurement of interference product ratio sound in video during AM modulation of sound carrier: AF signal is connected to AM sound input; otherwise identical with measurement 1.

3) Measurement of signal-to-noise ratio in video without AM/FM modulation of sound carrier: AF signals are switched off; video signal is switched off; control voltage at pin 11 is clamped to value present during connected video signal; modulation device is set to AM; filter: 300 Hz...3 kHz; detector: RMS √2; readout in dB to reference level of calibration is a_{S/P}.

Description of the measurement configuration to measure the residual carrier suppression

Adjust Cp in Circuit 1 and Dynamic Residual Carrier Suppression to Suppression Maximum.

Figure 12

Description of the measurement configuration to measure the video amplitude response

Figure 13

7

Static modulation characteristic of the FM sound modulator

Figure 14

Description of the measurement configuration to measure the 1.07 MHz moires

 $V_{\text{ViD pp}} = 250 \text{ mV}$: Frequency carrier level lies below the activation point of the video amplitude control and has been set to provide a ratio of 17 dB with respect to the video carrier.

Figure 15

Modulation index during negative video modulation and/or the voltage at pin 12 versus current at pin 12

Figure 16 a

Modulation depth is calculated as $m_D = (2 \times m)/(1 + m)$ from the modulation index. Prerequisite is a sine-shaped modulation.

 $m_{\rm N}$ -modulation index for negative modulation

 m_P - modulation index for positive modulation

If a resistor is connected to ground at pin 12 to adjust modulation depth, the resistor is calculated as $R_{12/M} = (V_{12/M})/I_{12}$).

Modulation index during positive video modulation and/or the voltage at pin 12 versus current at pin 12

Figure 16

Modulation depth is calculated as $m_D = (2 \times m)/(1 + m)$ from the modulation index. Prerequisite is a sine-shaped modulation.

 $m_{\rm N}$ = modulation index for negative modulation

 m_P - modulation index for positive modulation

If a resistor is connected to ground at pin 12 to adjust modulation depth, the resistor is calculated as $R_{12/M} = (V_{12/M})/I_{12}$.

Picture to sound carrier ratio versus dc voltage offset at pin 16

unloaded Q factor of resonant circuit $Q_U = 25$, $R_T = 6.8$ k; f = 5.5 MHz.

The picture to sound carrier ratio of $a_{P/S}$ = 13 dB was set via the loaded Q factor Q_L without external voltage at pin 16.

Figure 17

To adjust the picture to sound carrier ratio, a component was used with a resistance of typ. 11.5 k Ω at pins 17, 18.

The loaded Q factor of the resonant circuit was derived from the internal resistance $R_{17/18}$ connected in parallel with the external resistor $R_{\rm s}$.

Measurement of the sound oscillator FM deviation without preemphasis and deemphasis; $f_{\rm AF}=1~{\rm kHz}$; modulation deviation, sensitivity $(\Delta f_{\rm AF})/(\Delta V_{\rm AF})=0.38~{\rm kHz/mV}$; $V_{\rm AF}={\rm var}$; detector (P+P)/2; AF filter 30 Hz to 20 kHz, measurement in accordance with CCIR 468-2 DIN 45405; test circuit 1a.

Figure 18

Measurement of the sound oscillator FM deviation without preemphasis and deemphasis; $f_{\rm AF}=1\,$ kHz; modulation deviation, sensitivity $(\Delta f_{\rm AF})/(\Delta V_{\rm AF})=0.38\,$ kHz/mV; $V_{\rm AF}=v$ ar; detector (P+P)/2; AF filter 30 Hz to 20 kHz, measurement in accordance with CCIR 468-2 DIN 45405; test circuit 1 a

Figure 18 a

Sound oscillator harmonic distortion without preemphasis and deemphasis;

AF signal routed in at pin 1; AF amplitude = 150 mV_{rms}; AF filter 30 Hz to 20 kHz; detector (P+P)/2; measurement in accordance with CCIR 468-2 DIN 45405; test circuit 1a

Figure 18 b

Sound oscillator frequency without preemphasis and deemphasis;

AF signal routed in at pin 1; AF amplitude = 150 mV_{rms}; AF filter 30 Hz to 20 kHz; detector (P+P)/2; measurement in accordance with CCIR 468-2 DIN 45405; test circuit 1a

Figure 18 c

Sound oscillator frequency with pre-/deemphasis;

AF filter 30 Hz to 20 kHz; measurement in accordance with CCIR 468-2 DIN 45405; test circuit 1; $V_{AF} = 1 V_{rms}$

Figure 18 d

Description of the measurement configuration to measure the video signal control characteristics and the dynamic signal suppression in video frequencies

Figure 19

Characteristic of the video signal control circuit

a) $V_{13 \text{ rms}} = f(V_{10 \text{ rms}});$ b) $V_{11} = f(V_{10 \text{ rms}});$

 $f_{\text{mod}} = 100 \text{ kHz}$ $V_9 = 3.9 \text{ V}$

Static and dynamic mixer test with respect to balance characteristics based on a typical component

Figure 21

 $V_{13/15} - f(V_9)$ $V_{13 \text{ rms}} - f(V_9)$ f = 10 kHz

Measurement of the static output impedance

$$Z_{15} = \frac{\Delta V_{15}}{\Delta L_{15}}$$

$$Z_{13} = \frac{\Delta V_{13}}{\Delta I_{13}}$$

Figure 22

THE CONTRACTOR OF THE SECTION OF THE

Output circuit S parameter

Typ. output capacity is approx. 1 pF

Figure 23

Oscillator section S parameter

Figure 24

