TDA 5660 P
 Modulator for TV，Video and Sound Signals

The monolithically integrated circuit TDA 5660 P is especially suitable as modulator for the 48 to 860 MHz frequency range and is applied e．g．in video recorders，cable converters， TV converter installations，demodulators，video generators，video security systems，amateur TV applications，as well as personal computers．
－Synchronizing level－clamping circuit
－Peak white value gain control
－Continuous adjustment of modulation index for positive and negative modulation
－Dynamic residual carrier setting
－FM sound modulator
－AM sound modulator
－Picture carrier to sound carrier adjustment
－Symmetrical mixer output
－Symmetrical oscillator with own RF ground
－Low radiation
－Superior frequency stability of main oscillator
－Superior frequency stability of sound oscillator
－Internal reference voltage

Circuit description

Via pin 1，the sound signal is capacitively coupled to the AF input for the FM modulation of the oscillator．An external circuitry sets the preemphasis．This signal is forwarded to a mixer which is influenced by the AM modulation input of pin 16．The picture to sound carrier ratio can be changed by connecting an external voltage to pin 16 ，which deviates from the internal reference voltage．In case，the sound carrier should not be FM but AM modulated， pin 1 should be connected to pin 2 ，while the AF signal is capacitively coupled to pin 16. Through an additional external dc voltage at pin 16，the set AM modulation index can be changed by overriding the internally adjusted control voltage for a fixed AM modulation index． At the output of the above described mixer the FM and／or AM modulated sound signal is added to the video signal and mixed with the oscillator signal in the RF mixer．A parallel resonant circuit is connected to the sound carrier oscillator at pin 17，18．The unloaded Q of the resonant circuit must be $Q=25$ and the parallel resistor $R_{T}=6.8 \mathrm{k} \Omega$ to ensure a picture to sound carrier ratio of 12.5 dB ．At the same time，the capacitative and／or inductive reactance for the resonance frequency should have a value of $X_{\mathrm{C}} \approx X_{\mathrm{L}} \approx 800 \Omega$ ．
The video signal with the negative synchronous level is capacitively connected to pin 10. The internal clamping circuit is referenced to the synchronizing level．Should the video signal change by 6 dB ，this change will be compensated by the resonant circuit which is set to the peak white value．At pin 11，the current pulses of the peak white detector are filtered through the capacitor which also determines the control time constant．When pin 12 is connected to ground，the RF carrier switches from negative to positive video modulation．

With the variable resistor of $R=\infty \ldots .0 \Omega$ at pin 12, the modulation depth, beginning with $R=\infty$ and a negative modulation of $m_{D / N}=80 \%$, can be increased to $m_{D / N}=100 \%$ and continued with a positive modulation of $m_{\mathrm{D} / \mathrm{P}}=100 \%$ down to $m_{\mathrm{D} / \mathrm{P}}=88 \%$ with $R=0 \Omega$. The internal reference voltage has to be capacitively blocked at pin 2.
The amplifier of the RF oscillator is, available at pins 3-7. The oscillator operates as a symmetrical ECO circuit. The capacitive reactance for the resonance frequency should be $X_{c} \approx 70 \Omega$ between pins 3,4 and 6,7 and $X_{c} \approx 26 \Omega$ between pins 4,6 . In order to set the required residual carrier suppression, pin 9 is used to compensate for any dynamic asymmetry of the RF mixer during high frequencies of $>300 \mathrm{MHz}$. The oscillator chip ground, pin 5 , should be connected to ground at the oscillator resonant circuit shielding. Via pin 3 and 7 an external oscillator signal can be injected inductively or capacitively. The peripheral layout of the pc board should be provided with a minimum shielding attenuation of approx. 80 dB between the oscillator pins 3-7 and the modulator outputs 13-15.
For optimum residual carrier suppression, the symmetric mixer outputs at pins 13,15 should be connected to a matched balanced-to-unbalanced broadband transformer with excellent phase precision at 0 and 180 degrees, e.g. a Guanella transformer. The transmission loss should be less than 3 dB . In addition, an LC low pass filter combination is required at the output. The cut-off frequency of the low pass filter combination must exceed the maximum operating frequency.
If the application circuit according to figure 1,2 is used, a multiplication factor V/RF (application) $=$ V/RF (data sheet) 3.9 must be used to convert a 300Ω symmetrical impe:dance to an asymmetrical impedance of 75Ω for the stated RF output voltage V_{q} of the type specification in order to ensure a transmission attenuation of 0 dB for the balanced-to-unbalanced mixer.

TDA 5660 P

Maximum ratings

Supply voltage
Current from pin 2
Voltage at pin 1
Voltage at pin 9
Voltage at pin 10

Capacitance at pin 2
Capacitance at pin 11
Voltage at pin 12
Voltage at pin 13
Voltage at pin 15
Voltage at pin 16
Only the external circuitry shown
in application circuits 1 and 2 may be connected to pins $3,4,6,7,17$ and 18 Junction temperature Storage temperature

Thermal resistance (system-air)

Operating range

Supply voltage Video input frequency Sound input frequency
Output frequency

Ambient temperature
Sound oscillator
Voltage at pin 13, 15

	\min	\max		Remarks
V_{S}	-0.3	14.5	V	
$-I_{2}$	0	2	mA	$V_{2}=7$ to 8 V
				$V_{\mathrm{S}}=9.5$ to 13.5 V
V_{1}	$V_{2}-2$	$V_{2}+2$	V	$V_{\mathrm{S}}=9.5$ to 13.5 V
V_{9}	-4	1	V	
$V_{10 \mathrm{pp}}$		1.5	V	only via C
				(max. $1 \mu \mathrm{~F})$
C_{2}	0	100	nF	
C_{11}	0	15	$\mu \mathrm{~F}$	
V_{12}	-0.3	1.4	V	
V_{13}	V_{2}	V_{S}	V	
V_{15}	V_{2}	V_{S}	V	
V_{16}	$V_{2}-1.5$	$V_{2}+1.5$	V	$V_{\mathrm{S}}=9.5$ to 13.5 V
T_{1}				
$T_{\text {stg }}$	-40	125	${ }^{\circ} \mathrm{C}$	
$R_{\mathrm{th} \text { SA }}$		80	$\mathrm{~K} / \mathrm{W}$	

V_{S}	9.5	13.5	V	
f_{VIDEO}	0	5	MHz	
f_{AF}	0	20	kHz	
f_{a}	48	860	MHz	depending on the osciHtator circuitry
				at pins 3-7
T_{A}	0	70	${ }^{\circ} \mathrm{C}$	
f_{OSC}	4	7	MHz	
$V_{13,15}$	V_{2}	V_{S}	V	

Characteristics

$V_{S}=11 \mathrm{~V} ; T_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Current consumption
Reference voltage
Oscillator frequency range

Turn-on start-up drift
Δf_{OSc}

Frequency drift as
function of V_{S}
Video input current
at pin 10
Video input voltage at pin 10

Modulation depth
$V_{\text {viDEOPD }}=1 \mathrm{~V} ; \mathrm{f}_{\text {VIDEO }}-$
200 kHz sine signal Output impedance RF output voltage Modulation signal in neg. modulation pin 12 open Output capacitance

S parameter at pins
3, 4 and 6, 7
RF output phase RF output voltage change; adjustment range
RF output voltage change RF output voltage change Oscillator interference FM caused by AM modulation and coupling of the modulator output with the oscillator resonant circuit;
$V_{\text {VIDEO DP }}=1 \mathrm{~V}$;
$f_{\text {VIDEO }}=10 \mathrm{kHz}$; sine signal

Characteristics

$V_{S}=11 \mathrm{~V} ; T_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Intermodulation ratio Harmonic wave ratio

$$
\begin{aligned}
& \\
& \mathbf{a}_{\mathrm{MR}} \\
& \mathbf{a}_{\mathrm{H}}
\end{aligned}
$$

Harmonic wave ratio a

Sound carrier ratio	$a_{p / s}$
Color picture to sound	a_{p}
carrier ratio	
All remaining harmonic	a
waves	

Amplitude response of the video signal

Residual carrier suppression Static mixer balance characteristic	Δa_{R}
Dynamic mixer balance	$V_{13 \mathrm{rms}}$
characteristics	Δm_{D}
Stability of modulation depth	

Stability of set modulation depth Stability of set modulation depth Stability of set modulation depth
Δm_{D}
Δm_{D}
Δm_{D}
a_{v}
a_{R}
$\Delta V_{13 / 15}$
$V_{13 \mathrm{rms}}$
Δm_{D}
Δm_{D}
Δm_{D}
Δm_{D}

Test conditions
$f_{\mathrm{P}}+1.07 \mathrm{MHz}$
$f_{\mathrm{p}}+8.8 \mathrm{MHz}$ without video
signal $19,20,21$ unmodulated
video and sound carrier，
measured with the spectrum
analyzer as difference between
video carrier signal level and

$f_{\mathrm{P}}+2 f_{\mathrm{S}}$
$f_{p}+3 f_{s}$
V_{q} with spectrum analyzer； loaded Q factor Q_{L} of the sound oscillator resonant circuit adjusted by R_{S} to provide the required picture to sound carrier ratio of $12.5 \mathrm{~dB} ; R_{\mathrm{S}}=6.8 \mathrm{k} \Omega$ ； $Q_{U}=25$ of the sound oscillator circuit．
$f_{\mathrm{P}}+4.4 \mathrm{MHz}$（dependent on video signal）

Multiple of fundamental wave of picture carrier，without video signal，measured with spectrum analyzer；
$f_{\mathrm{P} / \mathrm{S}}=523.25-623.25 \mathrm{MHz}$ $V_{\text {VIDEO } \mathrm{pp}}=1 \mathrm{~V}$ with additional modulation $f=15 \mathrm{kHz}-5 \mathrm{MHz}$ sine signal between black and white

With adjustment at pin 9 Ch 30．．．Ch 40 V_{9} adjusted to $\Delta V_{13 / 15}$ minimum
V_{9} adjusted to $V_{13 . \mathrm{rms}}$ minimum Video input voitage changes with sine signals
$t=0.2 \mathrm{MHz} ; \Delta V_{\text {VIDEO }}^{\text {PD }}=1 \mathrm{~V}$ $\pm 3 \mathrm{~dB}$ ；Ch 30．．．Ch 40； $V_{S}=12 \mathrm{~V} ; T_{\mathrm{A}}=$ const．
$f=48 \ldots 100 \mathrm{MHz}$
$f=100 . .300 \mathrm{MHz}$
$T_{A}=0-60^{\circ} \mathrm{C} ; V_{S}=12 \mathrm{~V}$

\rightarrow	©）	∞		N	N	$\begin{aligned} & \vec{~} \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$		$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\omega}}$			$\underset{\sim}{\ddot{v}}$		7 10 1 0
					$\frac{1}{8}$	N		0	or	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{*}{N}$	Wู\％	3
－	N	\rightarrow	\rightarrow	0	0					\vec{v}	\＆	जै	\％
$\begin{aligned} & H \\ & \mathbf{N} \\ & \text { OK } \end{aligned}$	$\xrightarrow{+}$	$\begin{aligned} & H \\ & \text { H } \\ & \dot{O} \end{aligned}$	H N í	$\stackrel{\rightharpoonup}{0}$	$\stackrel{ \pm}{8}$			－		$\stackrel{\rightharpoonup}{0}$			灵
\bigcirc	－	8	か๐	$\stackrel{3}{4}$	$\stackrel{3}{<}$		\％	䀛	㽞	㽞皿	㽞㽞	是囬	

Characteristics $V_{\mathrm{S}}=11 \mathrm{~V} ; T_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Stability of set modulation depth Interference product ratio sound in video; sound carrier FM mod. Signal-to-noise ratio in video; sound carrier unmodulated Interference product ratio sound in video sound carrier AM mod. Umweighted FM noise level ratio video in sound; FuBK test picture as video signal
Unweighted FM noise level ratio video in sound

Signal-to-noise ratio of sound oscillator Differential gain

Differential phase Period required for peak white detector to reach steady state for full modulation depth with 1 white pulse per half frame with control in steady state

	Test conditions	Figure	min	typ	max	
Δm_{0} $a_{\text {S } / P}$	$\begin{aligned} & V_{\mathrm{S}}=9.5-13 ; 5 \mathrm{~V} ; \\ & T_{\mathrm{A}}=\text { const. } \\ & \mathrm{Ch} 30 . . \mathrm{Ch} 40 \end{aligned}$	1 $1 ; 11$	48	1 60	± 2.5	\%
$\mathrm{a}_{\mathrm{N} / \mathrm{P}}$	Ch 30...Ch 40	1;11	48	74		dB
$\mathbf{a}_{\mathbf{S / P}}$	Ch 30...Ch 40	1;11	20	33		dB
$a_{p / s}$	Ch 39	1a; 8	48	54		dB
$a_{\text {P/S }}$	Ch 39; test picture VU G-Y; U/V	2; 8	48	56		dB
	Ch 39; color bar	2; 8	46	52		dB
	Ch 39; uniform red level	2;8	48	58		dB
	Ch 39; uniform white level	2; 8	45	51		dB
	Ch 39; test pattern	2; 8	48	55		dB
	Ch 39; white bar	2;8	46	52		dB
	Ch 39; bar	2;8	45	50.8		dB
	Ch 39; 20T/2T	2;8	43	49		dB
	Ch 39; 30\% white leved	2;8	48	58		dB
	Ch 39; 250 kHz	2;8	46	52		dB
	Ch 39; multiburst	$2 ; 8$	46	53		dB
	Ch 39; ramp	2;8	44	50		dB
$\boldsymbol{a}_{\mathbf{S} / \mathrm{N}}$		1a;8	48	54		dB
$\mathrm{G}_{\text {dif }}$	measured with measurement demodulator, video test signals and vector scope	1			10	\%
φ_{t}	$\begin{aligned} & \text { C at pin } 11=10 \mu \mathrm{~F} \\ & I_{\text {leak }} \leq 2 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		6	$\begin{aligned} & 15 \\ & 50 \end{aligned}$	\% ${ }_{\text {\% }}$

Characteristics

$V_{S}=11 \mathrm{~V} ; T_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Setting time for video signal change from $0 V_{p p}$ to $1.4 V_{p p}$

Setting time for video blanking signal from 100% white level to 42% grey level with subsequent rise in grey level to 71% of video blanking signal (due to decontrol process)
Sound oscillator frequency range
Turn-on start-up drift
Sound oscillator frequency
operating voltage

FM mod. harmonic distortion Audio preamplifier input impedance (dyn.); FM operation FM sound modulator, static modulation characteristic

FM sound modulation characteristic (dynamic) AM sound modulation factor

AM sound modulation harmonic distortion

AM audio preamplifier input impedance
AM sound modulator input voltage

Pin description

Pin	Function
1	AF input for FM modulation
2	Internal reference voltage
3	Symmetrical oscillator input
4	Symmetrical oscillator output
5	Oscillator ground
6	Symmetrical oscillator output
7	Symmetrical oscillator input
8	Supply voltage
9	Dynamic residual carrier adjustment
10	Video input with clamping
11	Connection for smoothing capacitor
	for video control loop
12	Switch for positive and negative modulation
13	as well as residual carrier control
14	Symmetrical RF output
15	Remaining ground of component
16	Symmetrical RF output
17	Picture to sound carrier ratio (adjustment and AM sound input)
18	Sound oscillator symmetrical input for tank circuit
	Sound oscillator symmetrical input for tank circuit

Block diagram

Test and measurement circuit 1 for FM sound carrier and negative video modulation

Figure 1

Test and measurement circuit 1 for FM sound carrier and negative video modulation

Figure 1a

Test and measurement circuit 1 for FM sound carrier and negative video modulation

Figure 1b

Test and measurement circuit 2 for FM sound carrier and negative video modulation

Figure 2

AM sound modulation measurement

Figure 3

AM sound carrier modulation index versus
AF input voltage at pin 16

Figure 4 a

AM sound carrier modulation index versus

 dc voltage offset at pin 16

Figure 4 b

Measurement circuits

Figure 5

TDA 5660 P Remaining External Circuitry as Fig. 1

Figure 6

Frequency spectrum above the video carrier, measured at clamp V_{a} with a spectrum analyzer

Figure 7

> BT = Video Carrier
> FT = Frequency Carrier
> TT = Sound Carrier

Description of the measurement configuration to measure the noise voltage, video in sound

Sound Generator at Modulation Frequency $f_{A F}=400 \mathrm{~Hz}$
Fgure 8

Calibration: A signal of $V_{\mathrm{AF}} \mathrm{rma}-270 \mathrm{mV}$ and $\boldsymbol{t}=\mathbf{0 . 4} \mathbf{~ k H z}$, corresponding to a nominal deviation of 30 kHz , is connected to the sound input, and the demodulated AF reference level at the audio measurement device is defined as 0 dB . No video signal is pending.
Measurement: 1) The AF signal is switched off and the FuBK video signal is connected to the video input with $V_{\text {vIDEO pp }}=1 \mathrm{~V}$. The audio level in relation to the reference calibration level is measured as ratio $a_{p / 8}=20 \log \left(V_{\text {fubk }}\right) /\left(V_{\text {nominal }}\right)$.
2) $A F$ and video signal are switched off. The noise ratio in relation to the AF reference calibration level is measured as signal-to-noise ratio $a_{s / N}$.

Description of the measurement configuration to measure the oscillator interference FM

Figure 9

Description of the measurement configuration to measure the total harmonic distortion

 during FM operation of the sound carrier

Figure 10

Description of the measurement configuration to meesure the total harmonic dietortion during FM operation of the sound carrier

Figure 10a
7

Description of the measurement conflguration to measure the sound and/or noise in video during FM and/or AM sound carrier modulation

Figure 11

Calibration: AF signals are switched off; video signal is pending at the video input; device to measure modulation set at AM is adjusted to video carrier; filter: $300 \mathrm{~Hz} \ldots 200 \mathrm{kHz}$; detector $(P+P) / 2$; resulting modulation index is defined as $m_{v}=0 \mathrm{~dB}$.
Measurement: 1) Measurement of interference product ratio sound in video during FM modulation of the sound carrier: AF signal is connected to FM sound input; video signal is switched off; device to measure modulation is set to $A M$; filter: $300 \mathrm{~Hz} \ldots 3 \mathrm{kHz}$; detector: $(P+P) / 2$; a ratio of $a_{\mathrm{S} / \mathrm{P}}=20 \log$ $m_{\mathrm{V} / \mathrm{s}} / \mathrm{mV}$) is derived from the resulting modulation index $m_{\mathrm{v} / \mathrm{s}}$.
2) Measurement of interference product ratio sound in video during $A M$ modulation of sound carrier: AF signal is connected to AM sound input; otherwise identical with measurement 1.
3) Measurement of signal-to-noise ratio in video without AM/FM modulation of sound carrier: AF signals are switched off; video signal is switched off; control voltage at pin 11 is clamped to value present during connected video signal; modulation device is set to AM; filter: $300 \mathrm{~Hz} \ldots 3 \mathrm{kHz}$; detector: RMS $\sqrt{2}$; readout in dB to reference level of calibration is $\mathrm{a}_{\mathrm{s} / \mathrm{p}}$.

Description of the measurement configuration to measure the residual carrier suppression

Adjust Cp in Circuit 1 and Dynamic Residual Carrier Suppression to Suppression Maximum.

Figure 12

Description of the measurement configuration to measure the video amplitude response

Flgure 13

Static modulation characteristic of the FM sound modulator

Figure 14

Description of the measurement configuration to measure the 1.07 MHz moires
 has been set to provide a ratio of 17 dB with respect to the video carrier.

Modulation index during negative video modulation and/or the voltage at pin 12 versus current at pin 12

Figure 16a

Modulation depth is calculated as $m_{0}=(2 \times m) /(1+m)$ from the modulation index. Prerequisite is a sine-shaped modulation.
$m_{N}=$ modulation index for negative modulation
$m_{p}=$ modulation index for positive modulation
If a resistor is connected to ground at pin 12 to adjust modulation depth, the resistor is calculated as $\left.R_{12 / \mathrm{M}}=\left(V_{12 / \mathrm{M}}\right) / I_{12}\right)$.

Modulation index during posiltue video modulation and/or the voltage at pin 12 versus current at pin 12

Figure 16

Modulation depth is calculated as $m_{D}=(2 \times m) /(1+m)$ from the modulation index. Prerequisite is a sine-shaped modulation.
$m_{N}=$ modulation index for negative modulation
$m_{p}=$ modulation index for positive modulation
If a resistor is connected to ground at pin 12 to adjust modulation depth, the resistor is calculated as $\left.R_{12 / \mathrm{M}}=\left(V_{12 / \mathrm{M}}\right) / I_{12}\right)$.

Plicture to sound carrier ratio versus de voltage offset at pin 16 unloaded Q factor of resonant circuit $Q_{U}=25, R_{\mathrm{T}}=6.8 \mathrm{k} ; f=5.5 \mathrm{MHz}$. The picture to sound carrier ratio of $a_{P / s}=13 \mathrm{~dB}$ was set via the loaded Q factor Q_{L} without external voltage at pin 16.

Figure 17

To adjust the picture to sound carrier ratio, a component was used with a resistance of typ. 11.5 k Ω at pins 17, 18.
The loaded Q factor of the resonant circuit was derived from the internal resistance $R_{17 / 18}$ connected in parallel with the external resistor R_{s}.

Measurement of the sound oscilletor FM devietion whthout preemphasls and deemphasis; $f_{\mathrm{AF}}=1 \mathrm{kHz}$; modulation deviation, sensitivity $\left(\Delta f_{\mathrm{AF}}\right) /\left(\Delta V_{\mathrm{AF}}\right)=0.38 \mathrm{kHz} / \mathrm{mV} ; V_{\mathrm{AF}}=\mathrm{var}$; detector ($\mathrm{P}+\mathrm{P}$)/2; AF fllter 30 Hz to 20 kHz , measurement in accordance with CCIR 468-2 DIN 45405; test circuit 1 a.

Figure 18

Measurement of the sound osclllator FM deviation without preemphasis and deemphasis; $f_{A F}=1 \mathrm{kHz}$; modulation deviation, sensitivity $\left(\Delta f_{A F}\right) /\left(\Delta V_{A F}\right)=0.38 \mathrm{kHz} / \mathrm{mV} ; V_{A F}=v a r$; detector ($P+P$)/2; AF filter 30 Hz to 20 kHz , measurement in accordance with CCIR 468-2 DIN 45405; test circuit 1 a

Figure 18 a

Sound oscillator harmonic distortion without preemphasis and deemphasis;
AF signal routed in at pin 1; AF amplitude $=150 \mathrm{mV}_{\text {rms }}$; AF filter 30 Hz to 20 kHz ; detector ($P+P$)/2; measurement in accordance with CCIR 468-2 DIN 45405; test circuit 1a

Figure 18b

Sound oscillator frequency without preemphasis and deemphasis;
AF signal routed in at pin 1; AF amplitude $=150 \mathrm{mV}$ rms ; AF filter 30 Hz to 20 kHz ; detector $(P+P) / 2$; measurement in accordance with CCIR 468-2 DIN 45405; test circuit 1a

Figure 18 c

Sound oscillator frequency with pre-/deemphasis;

AF filter 30 Hz to 20 kHz ; measurement in accordance with CCIR 468-2 DIN 45405; test circuit 1; $V_{\mathrm{AF}}=1 \mathrm{~V}_{\text {rms }}$

Figure 18 d

Description of the measurement configuration to measure the video signal controf characteristics and the dynamic signal suppression in video frequencies

Figure 19

Characteristic of the video signal control circuit

Static and dynamic mixer test with respect to balance characteristics based on a typical component

Figure 21

Measurement of the static output impedance

$$
\begin{aligned}
& Z_{15}=\frac{\Delta V_{15}}{\Delta I_{15}} \\
& Z_{13}=\frac{\Delta V_{13}}{\Delta I_{13}}
\end{aligned}
$$

Figure 22

Output circuit S parameter

Typ. output capacity is approx. 1 pF

Figure 23

Oscillator section S parameter

Figure 24

Application circult 1

Application circuit 2

Application circuit 3

Application circuit 4

Application circuit 5

Application circuit 6

