21–23 GHz GaAs MMIC Medium Power Amplifier

III Alpha

AA022P2-00

Features

- Single Bias Supply Operation (6 V)
- 22 dBm Typical P_{1 dB} Output Power at 23 GHz
- 14 dB Typical Small Signal Gain
- 0.25 µm Ti/Pd/Au Gates
- 100% On-Wafer RF and DC Testing
- 100% Visual Inspection to MIL-STD-883 MT 2010

Description

Alpha's two-stage balanced K band GaAs MMIC power amplifier has a typical $P_{1\ dB}$ of 22 dBm with 13 dB associated gain guaranteed across frequency range 21–23 GHz. The chip uses Alpha's proven 0.25 μ m MESFET technology, and is based upon MBE layers and electron beam lithography for the highest uniformity and repeatability. The FETs employ surface passivation to ensure a rugged reliable part with through-substrate via holes and gold-based backside metallization to facilitate a conductive epoxy die attach process. All chips are screened for small signal S-parameters and power characteristics prior to shipment for guaranteed performance.

Chip Outline

Dimensions indicated in mm. All DC (V) pads are $0.1 \times 0.1 \text{ mm}$ and RF In, Out pads are 0.07 mm wide. Chip thickness = 0.1 mm.

Absolute Maximum Ratings

Characteristic	Value
Operating Temperature (T _C)	-55°C to +90°C
Storage Temperature (T _{ST})	-65°C to +150°C
Bias Voltage (V _D)	7 V _{DC}
Power In (P _{IN})	19 dBm
Junction Temperature (T _J)	175°C

Electrical Specifications at 25°C (VDS = 6 V)

. =-							
Parameter	Condition	Symbol	Min.	Typ. ²	Max.	Unit	
Drain Current (at Saturation)		I _{DS}	100	280	300	mA	
Small Signal Gain	F = 21–23 GHz	G	12	14		dB	
Input Return Loss	F = 21–23 GHz	RLi	44.4	-8	-6	dB	
Output Return Loss	F = 21–23 GHz	RLO		-9	-7	dB	
Output Power at 1 dB Gain Compression	F = 23 GHz	P _{1 dB}	19	22		dBm	
Saturated Output Power	F = 23 GHz	P _{SAT}	21	23.5		dBm	
Gain at Saturation	F = 23 GHz	G _{SAT}		11		dB	
Thermal Resistance ¹		ΘJC		69		°C/W	

^{1.} Calculated value based on measurement of discrete FET.

Typical represents the median parameter value across the specified frequency range for the median chip.

Typical Performance Data

Typical Small Signal Performance S-Parameters (V_{DS} = 6 V I_{DS} = 240 mA, T_A = 25°C)

Bias Arrangement

For biasing on, adjust V_{DS} from zero to the desired value (6 V recommended). For biasing off, reverse the biasing on procedure.

Circuit Schematic

