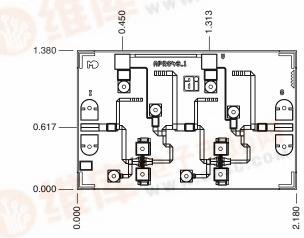
27–31 GHz GaAs MMIC Driver Amplifier

III Alpha

AA028P2-00


Features

- Single Bias Supply Operation (6 V)
- 14 dB Typical Small Signal Gain
- 16 dBm Typical P_{1 dB} Output Power at 28 GHz
- 0.25 µm Ti/Pd/Au Gates
- 100% On-Wafer RF and DC Testing
- 100% Visual Inspection to MIL-STD-883 MT 2010

Description

Alpha's two-stage reactively-matched 27–31 GHz GaAs MMIC driver amplifier has typical small signal gain of 14 dB with a typical P_{1 dB} of 16 dBm at 28 GHz. The chip uses Alpha's proven 0.25 μm MESFET technology, and is based upon MBE layers and electron beam lithography for the highest uniformity and repeatability. The FETs employ surface passivation to ensure a rugged, reliable part with through-substrate via holes and gold-based backside metallization to facilitate a conductive epoxy die attach process. All chips are screened for gain, output power and S-parameters prior to shipment for guaranteed performance. Designed for 27–31 GHz LMDS and digital radio bands.

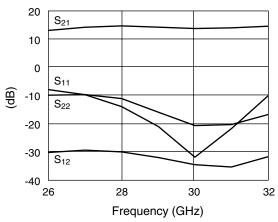
Chip Outline

Dimensions indicated in mm. All DC (V) pads are $0.1 \times 0.1 \text{ mm}$ and RF In, Out pads are 0.07 mm wide. Chip thickness = 0.1 mm.

Absolute Maximum Ratings

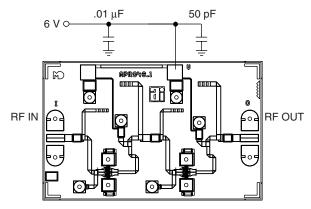
Characteristic	Value		
Operating Temperature (T _C)	-55°C to +90°C		
Storage Temperature (T _{ST})	-65°C to +150°C		
Bias Voltage (V _D)	7 V _{DC}		
Power In (P _{IN})	16 dBm		
Junction Temperature (T _J)	175°C		

Electrical Specifications at 25° C ($V_{DS} = 6$ V)

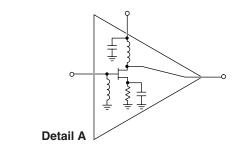

Parameter	Condition	Symbol	Min.	Typ. ²	Max.	Unit
Drain Current		I _{DS}	10-1	80	110	mA
Small Signal Gain	F = 27–31 GHz	G	12	14		dB
Input Return Loss	F = 27–31 GHz	RL	ALT.	-11	-6	dB
Output Return Loss	F = 27–31 GHz	RLO		-12	-6	dB
Output Power at 1 dB Gain Compression	F = 28 GHz	P _{1 dB}	13	16		dBm
Saturated Output Power	F = 28 GHz	P _{SAT}	14	17		dBm
Thermal Resistance ¹	0750	Θ _{JC}		198		°C/W

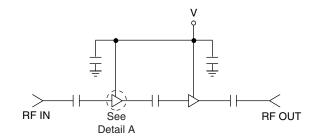
^{1.} Calculated value based on measurement of discrete FET.

Typical represents the median parameter value across the specified frequency range for the median chip.



Typical Performance Data


Typical Small Signal Performance S-Parameters (V_{DS} = 6 V)


Bias Arrangement

For biasing on, adjust V_{DS} from zero to the desired value (6 V recommended). For biasing off, reverse the biasing on procedure.

Circuit Schematic

