查询ADC0819供应商

专业PCB打样工厂 ,24小时加急出货 捷多邦

National Semiconductor

ADC0819 8-Bit Serial I/O A/D Converter with 19-Channel Multiplexer

General Description

The ADC0819 is an 8-Bit successive approximation A/D converter with simultaneous serial I/O. The serial input controls an analog multiplexer which selects from 19 input channels or an internal half scale test voltage.

An input sample-and-hold is implemented by a capacitive reference ladder and sampled data comparator. This allows the input signal to vary during the conversion cycle.

Separate serial I/O and conversion clock inputs are provided to facilitate the interface to various microprocessors.

Features

- Separate asynchronous converter clock and serial data I/O clock
- 19-Channel multiplexer with 5-Bit serial address logic.
- Built-in sample and hold function.

Connection Diagrams

Molded Chip Carrier (PCC) Package

- Ratiometric or absolute voltage referencing.
- No zero or full-scale adjust required.
- Internally addressable test voltage.
- OV to 5V input range with single 5V power supply.
- TTL/MOS input/output compatible.
- 28-pin molded chip carrier or 28-pin molded DIP

Key Specifications

- Resolution
- Total unadjusted error
- Single supply
- Low Power
- Conversion Time

 \pm 1/₂LSB and \pm 1LSB 5V_{DC} 15 mW 16 µs

8-Bits

December 1994

ADC0819 8-Bit Serial I/O A/D Converter with 19-Channel Multiplexe

23

26

27 **Φ2CU**

22

DZSC.COM DO CIS VREF CH18 CH17 CH17 VCC 28 25 24 23 22 21 20 19 SCLK - CH15 φ_{2CLK} V_{CC} - CH14 ADDRESS LATCH AND DECODER CHO - CH13 CONTROL CH1 GND AND TIMING CH2 - CH12 CH3 CH11 CHO CH4 - CH5 - CH2 - CH3 - CH1 CH2 TL/H/9287-1 CH3 4 CH4 5 **Top View** 6 Order Number ADC0819BCV, CCV CH5 7 OUTPUT CH6 7 CH7 9 CH8 10 CH9 11 CH10 12 CH11 13 CH12 15 CH13 16 CH14 17 CH15 18 CH16 19 CH17 20 SAF 0 SHIFT See NS Package Number V28A

CH18

Functional Diagram

ANALOG INPUT MUX

VTEST

| 14

Dual-In-Line Package сно Vcc 27 - \$2 CLK 26 - S CLK CH1 CH2 CH3 25 - DI CH4 24 - DO - cs CH5 23 CH6 22 - V_{REF}(+) CH7 -Vprr(-) CH8 -CH18 CH9 CH17 CH10 -CH16 CH11 -CH15 CH12 - CH14 GND - CH13 TL/H/9287-20 **Top View** Order Number ADC0819BCN, CIN See NS Package Number N28B

© 1995 National Semiconductor Corporation TI /H/9287 RRD-B30M115/Printed in U. S. A.

TI /H/9287-2

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage (VCC) 6.5V

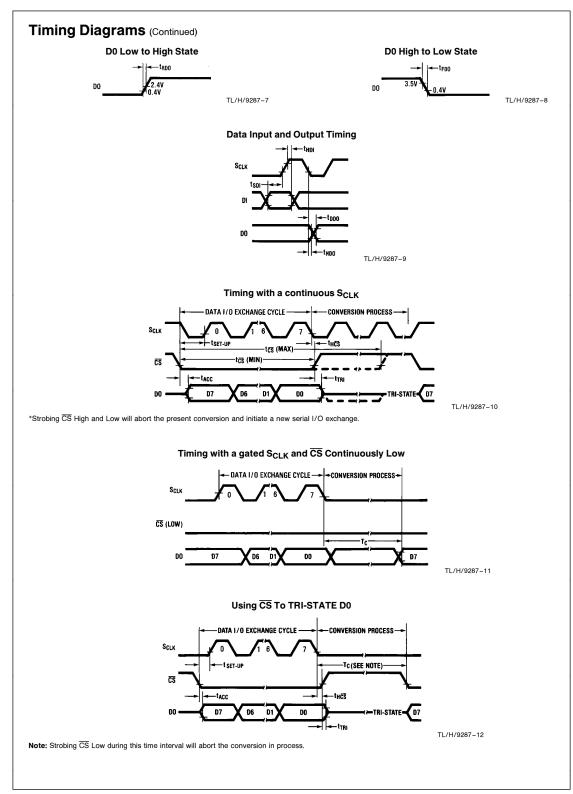
Supply Voltage (VCC)	0.5 V
Voltage	
Inputs and Outputs	-0.3V to V _{CC} $+0.3V$
Input Current Per Pin (Note 3)	$\pm 5 mA$
Total Package Input Current (Note 3)	±20mA
Storage Temperature	-65°C to +150°C
Package Dissipation at $T_A = 25^{\circ}C$	875 mW

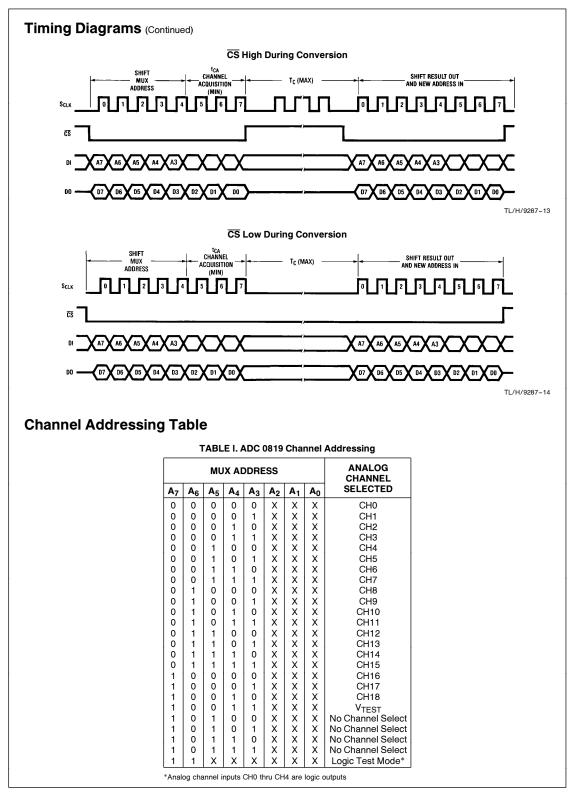
Lead Temperature (Soldering, 10 sec.)	
Dual-In-Line Package (Plastic)	260°C
Surface Mount Package	
Vapor Phase (60 sec.)	215°C
Infrared (15 sec.)	220°C
ESD Susceptibility (Note 11)	2000V

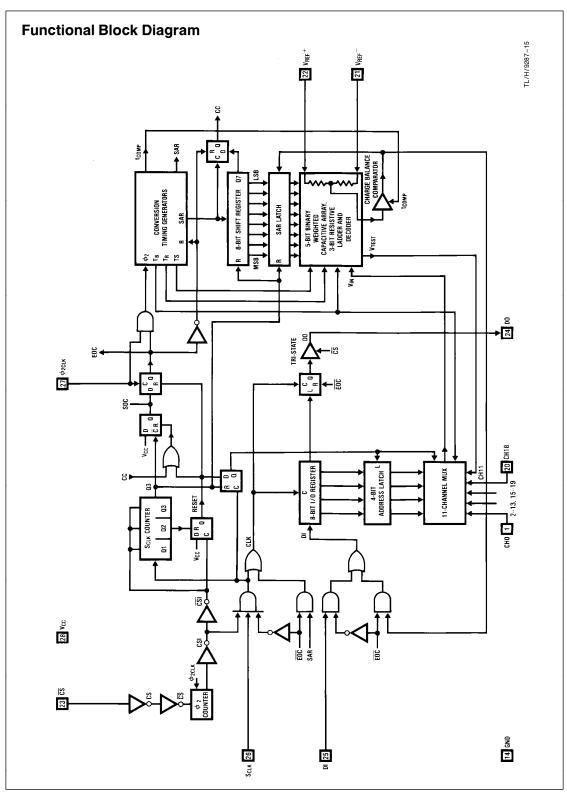
Operating Ratings (Notes 1 & 2)

Supply Voltage (V _{CC})	4.5 V_{DC} to 6.0 V_{DC}
Temperature Range	$T_{MIN} \leq T_A \leq T_{MAX}$
ADC0819BCV, ADC0819CCV	$-40^{\circ}C \leq T_{\text{A}} \leq +85^{\circ}C$
ADC0819BCN	$0^{\circ}C \leq T_{A} \leq + 70^{\circ}C$
ADC0819CIN	$-40^{\circ}C \leq T_{A} \leq +85^{\circ}C$

Electrical Characteristics


The following specifications apply for $V_{CC} = 5V$, $V_{REF} = 5V$, $\phi_{2 CLK} = 2.097$ MHz unless otherwise specified. Boldface limits apply from T_{MIN} to T_{MAX}; all other limits T_A = T_J = 25°C.


Parameter	Conditions	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units
ONVERTER AND MULTIPLEXER	CHARACTERISTICS				
Maximum Total Unadjusted Error ADC0819BCV, BCN ADC0819CCV, CIN	V _{REF} =5.00 V _{DC} (Note 4)		± 1/2 ± 1	± ½ ± 1	LSB LSB
Minimum Reference Input Resistance		8		5	kΩ
Maximum Reference Input Resistance		8	11	11	kΩ
Maximum Analog Input Range	(Note 5)		V _{CC} +0.05	V _{CC} +0.05	V
Minimum Analog Input Range			GND-0.05	GND-0.05	V
On Channel Leakage Current	(Note 9) On Channel = 5V Off Channel = 0V		400	1000	nA
	On Channel = 0V Off Channel = 5V (Note 9)		-400	- 1000	nA
Off Channel Leakage Current	(Note 9) On Channel = 5V Off Channel = 0V		-400	- 1000	nA
	On Channel = 0V Off Channel = 5V (Note 9)		400	1000	nA
Minimum V _{TEST} Internal Test Voltage	V _{REF} = V _{CC} , CH 19 Selected		125	125	(Note 10) Counts
Maximum V _{TEST} Internal Test Voltage	V _{REF} = V _{CC} , CH 19 Selected		130	130	(Note 10) Counts
GITAL AND DC CHARACTERIST	ics		1		
V _{IN(1)} , Logical ''1'' Input Voltage (Min)	V _{CC} =5.25V		2.0	2.0	V
V _{IN(0)} , Logical ''0'' Input Voltage (Max)	V _{CC} =4.75V		0.8	0.8	V
l _{IN(1)} , Logical "1" Input Current (Max)	V _{IN} =5.0V	0.005	2.5	2.5	μΑ
I _{IN(0)} , Logical ''0'' Input Current (Max)	V _{IN} =0V	-0.005	-2.5	-2.5	μΑ


Parameter	Conditions		ns	Typical (Note 6)		Teste Limi (Note	t Lir	nit	Units
DIGITAL AND DC CHARACTERISTIC	S (Con	tinued)							
V _{OUT(1)} , Logical "1" Output Voltage (Min)	$V_{CC} = 4.75V$ $I_{OUT} = -360 \ \mu A$ $I_{OUT} = -10 \ \mu A$		μA uA			2.4 2.4 4.5 4.5			V V
V _{OUT(0)} , Logical "0" Output Voltage (Max)	V _{CC} =5.25V I _{OUT} =1.6 mA					0.4	0.	.4	v
I _{OUT} , TRI-STATE Output Current (Max)	V _{OUT} =0V V _{OUT} =5V		-0.0 0.0			-3 3		3 3	μΑ μΑ
I _{SOURCE} , Output Source Current (Min)	V _{OUT}	=0V	-1		4	-6.5	5 – 6	ò.5	mA
I _{SINK} , Output Sink Current (Min)	VOUT	=V _{CC}		16		8.0	8.	.0	mA
I _{CC} , Supply Current (Max)	$\overline{\text{CS}} = 1$	I, V _{REF}	Open	1		2.5	2.	.5	mA
I _{REF} (Max)	VREF	=5V		0.7	,	1		1	mA
AC CHARACTERISTICS									
Parameter			Con	ditions	Typical (Note 6)	Tested Limit (Note 7)	Limit		Units
$\phi_{2 \text{ CLK}}, \phi_{2} \text{ Clock Frequency}$		MIN			0.70		1.0		MHz
		MAX	-		4.0	2.0	2.1		101112
S _{CLK} , Serial Data Clock		MIN		5.0					
Frequency		MAX			1000	525	525		KHz
T _C , Conversion Process Time		MIN	Not Including MUX Addressing and Analog Input Sampling Times		26		26		ϕ_2 cycles
		MAX			32		32		
t_{ACC} , Access Time Delay From \overline{CS}		MIN					1		φ ₂ cycle
Falling Edge to DO Data Valid		MAX					3		12 5
t _{SET-UP} , Minimum Set-up Time of CS Falling Edge to S _{CLK} Rising Edge						$4/\phi_{2}$ CLK $+\frac{1}{2}$	1 S _{CLK}	sec	
$t_{H\overline{CS}}, \overline{CS}$ Hold Time After the Falling Edge of S_{CLK}							0		ns
t CS, Total CS Low Time MIN		MIN					t _{set-up} +8/\$	CLK	sec
		MAX					t cs (min)+26	¢2CLK	sec
t _{HDI} , Minimum DI Hold Time from S _{CLK} Rising Edge					0		0		ns
t _{HDO} , Minimum DO Hold Time from S _{CLK} Falling Edge		$R_L = 30$ $C_L = 100$	k, D pF			10		ns	
$t_{SDI},$ Minimum DI Set-up Time to S_{CLK} Rising Edge					200		400		ns
t _{DDO} , Maximum Delay From S _{CLK} Falling Edge to DO Data Valid			$R_{L} = 30$ $C_{L} = 100$		180	200	250		ns
t _{TRI} , Maximum DO Hold Time, (CS Rising edge to DO TRI-STAT	Έ)		R _L =3k, C _L =100		90	150	150		ns

Γ

Parameter		Conditions	Typical (Note 6)	Tested Limit (Note 7)	Design Limit (Note 8)	Units
C CHARACTERISTIC	S (Continued)					
t _{CA} , Analog Sampling Time	After Address CS =Low	Is Latched			3/S _{CLK} +1 μ s	sec
t _{RDO} , Maximum DO	$R_L = 30 k\Omega$,	"TRI-STATE" to "HIGH" State	75	150	150	ns
Rise Time	C _L =100 pf	"LOW" to "HIGH" State	150	300	300	110
_{FDO} , Maximum DO	$R_L = 30 k\Omega$,	"TRI-STATE" to "LOW" State	75	150	150	ns
all Time	C _L =100 pf	"HIGH" to "LOW" State	150	300	300	
_{IN} , Maximum Input	Analog Inputs	, ANO-AN10 and V _{REF}	11		55	pF
apacitance	All Others		5		15	P.
V _{CC} + .3V the total packa ±5 mA is four. Note 4: Total unadjusted ∉ Note 5: Two on-chip diode greater than V _{CC} supply. E elevated temperatures, an analog V _{IN} does not excee therefore require a minimu Note 6: Typicals are at 25 Note 7: Tested Limits are Note 8: Design Limits are Note 9: Channel leakage € Note 10: 1 count = V _{REF} Note 11: Human body mo	ge current must be lin error includes offset, as are tied to each an 3e careful during test d cause errors for an supply voltage of "C and represent mo guaranteed to Natior guaranteed, but not current is measured a /256. del; 100 pF discharge	hal's AOQL (Average Outgoing Quality Level 100% production tested. These limits are no after the channel selection. ad through a 1.5 kΩ resistor.	number of pins that p errors. Inalog input volta; nalog inputs (5V) s 50 mV forward correct. To achieva at tolerance and k l). ot used to calcula	at can be over dri ges one diode dr can cause this i bias of either dic re an absolute 0 M pading.	ven at the maximum curre op below ground or one d nput diode to conduct, esp de. This means that as lo I_{DC} to 5 V_{DC} input voltage ity levels.	nt level o liode drop pecially a ng as the
\$		2H0 (0N) 2H1 (0FF) 2H18 (0FF) 2H18 (0FF) TL/H/9287-3 TI /H	ADCO819 DO	grams		
	POINT	5.0V	D0 "TI	RI-STATE" R	ise & Fall Times	

Functional Description

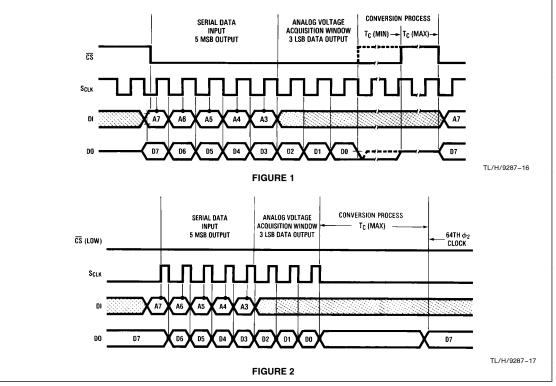
1.0 DIGITAL INTERFACE

The ADC0819 uses five input/output pins to implement the serial interface. Taking chip select (\overline{CS}) low enables the I/O data lines (DO and DI) and the serial clock input (S_{CLK}). The result of the last conversion is transmitted by the A/D on the DO line, while simultaneously the DI line receives the address data that selects the mux channel for the next conversion. The mux address is shifted in on the rising edge of S_{CLK} and the conversion data is shifted out on the falling edge. It takes eight S_{CLK} cycles to complete the serial I/O. A second clock (ϕ_2) controls the SAR during the conversion process and must be continuously enabled.

1.1 CONTINUOUS SCLK

With a continuous S_{CLK} input \overline{CS} must be used to synchronize the serial data exchange (see Figure 1). The ADC0819 recognizes a valid \overline{CS} one to three φ_2 clock periods after the actual falling edge of \overline{CS} . This is implemented to ensure noise immunity of the \overline{CS} signal. Any spikes on \overline{CS} less than one φ_2 clock period will be ignored. \overline{CS} must remain low during the complete I/O exchange which takes eight S_{CLK} cycles. Although \overline{CS} is not immediately acknowledged for the purpose of starting a new conversion, the falling edge of \overline{CS} immediately enables DO to output the MSB (D7) of the previous conversion.

The first S_{CLK} rising edge will be acknowledged after a setup time (t_{set-up}) has elapsed from the falling edge of \overline{CS} . This and the following seven S_{CLK} rising edges will shift in the channel address for the analog multiplexer. Since there are 19 channels only five address bits are utilized. The first five S_{CLK} cycles clock in the mux address, during the next three S_{CLK} cycles the analog input is selected and sampled. During


this mux address/sample cycle, data from the last conversion is also clocked out on DO. Since D7 was clocked out on the falling edge of \overline{CS} only data bits D6–D0 remain to be received. The following seven falling edges of S_{CLK} shift out this data on DO.

The 8th S_{CLK} falling edge initiates the beginning of the A/D's actual conversion process which takes between 26 and 32 ϕ_2 cycles (T_C). During this time $\overline{\rm CS}$ can go high to TRI-STATE DO and disable the S_{CLK} input or it can remain low. If $\overline{\rm CS}$ is held low a new I/O exchange will not start until the conversion sequence has been completed, however once the conversion ends serial I/O will immediately begin. Since there is an ambiguity in the conversion time (T_C) synchronizing the data exchange is impossible. Therefore $\overline{\rm CS}$ should go high before the 26th ϕ_2 clock has elasped and return low after the 32nd ϕ_2 to synchronize serial communication.

A conversion or I/O operation can be aborted at any time by strobing \overline{CS} . If \overline{CS} is high or low less than one ϕ_2 clock it will be ignored by the A/D. If the \overline{CS} is strobed high or low between 1 to 3 ϕ_2 clocks the A/D may or may not respond. Therefore \overline{CS} must be strobed high or low greater than 3 ϕ_2 clocks to ensure recognition. If a conversion or I/O exchange is aborted while in process the consequent data output will be erroneous until a complete conversion sequence has been implemented.

1.2 DISCONTINUOUS SCLK

Another way to accomplish synchronous serial communication is to tie \overline{CS} low continuously and disable S_{CLK} after its 8th falling edge (see *Figure 2*). S_{CLK} must remain low for

Functional Description (Continued)

at least 32 φ_2 clocks to ensure that the A/D has completed its conversion. If S_{CLK} is enabled sooner, synchronizing to the data output on DO is not possible since an end of conversion signal from the A/D is not available and the actual conversion time is not known. With \overline{CS} low during the conversion time (32 φ_2 max) DO will go high or low after the eighth falling edge of S_{CLK} until the conversion is completed. Once the conversion is through DO will transmit the MSB. The rest of the data will be shifted out once S_{CLK} is enabled as discussed previously.

If \overline{CS} goes high during the conversion sequence DO is tristated, and the result is not affected so long as \overline{CS} remains high until the end of the conversion.

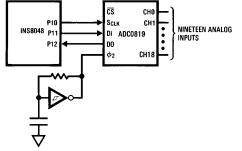
1.2 MULTIPLEXER ADDRESSING

The five bit mux address is shifted, MSB first, into DI. Input data corresponds to the channel selected as shown in table 1. Care should be taken not to send an address greater than or equal to twenty four (11XXX) as this puts the A/D in a digital testing mode. In this mode the analog inputs CH0 thru CH4 become digital outputs, for our use in production testing.

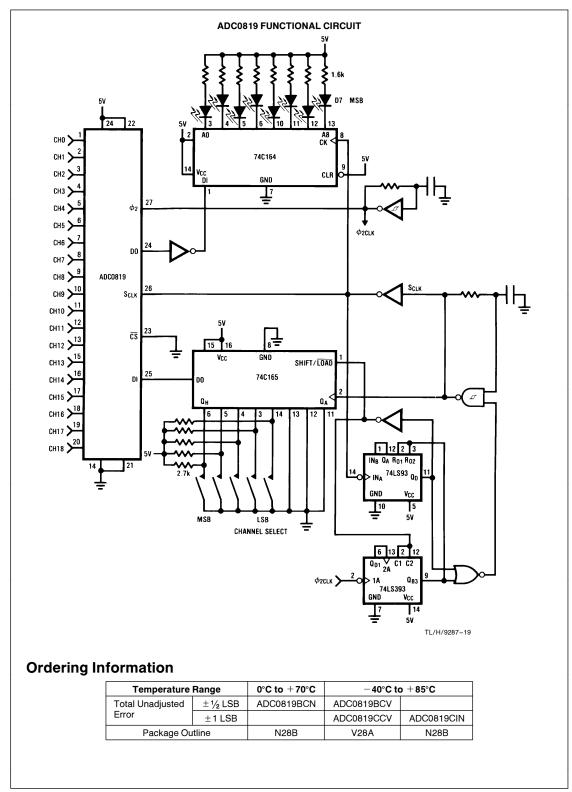
2.0 ANALOG INPUT

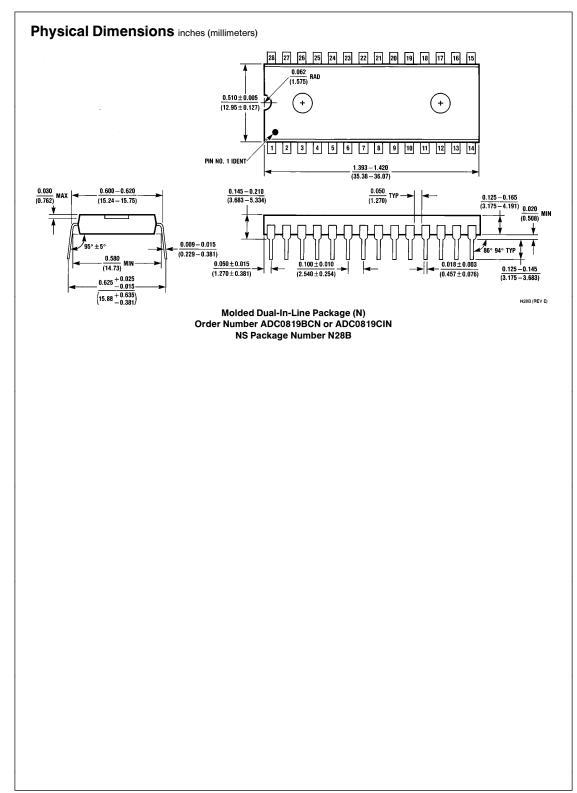
2.1 THE INPUT SAMPLE AND HOLD

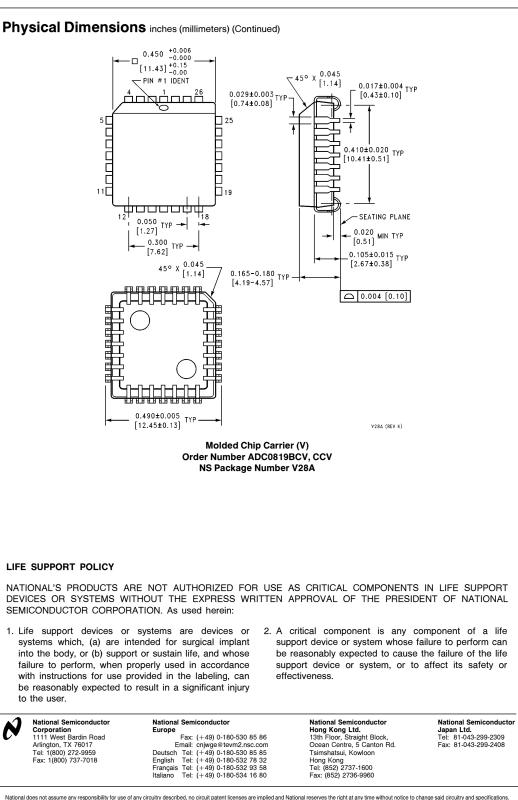
The ADC0819's sample/hold capacitor is implemented in its capacitive ladder structure. After the channel address is received, the ladder is switched to sample the proper analog input. This sampling mode is maintained for 1 μ sec after the


eighth S_{CLK} falling edge. The hold mode is initiated with the start of the conversion process. An acquisition window of $3I_{S_{CLK}}+1~\mu$ sec is therefore available to allow the ladder capacitance to settle to the analog input voltage. Any change in the analog voltage before or after the acquisition window will not effect the A/D conversion result.

In the most simple case, the ladder's acquisition time is determined by the R_{on} (3K) of the multiplexer switches and the total ladder capacitance (90pf). These values yield an acquisition time of about 2 μsec for a full scale reading. Therefore the analog input must be stable for at least 2 μsec before and 1 μsec after the eighth S_{CLK} falling edge to ensure a proper conversion. External input source resistance and capacitance will lengthen the acquisition time and should be accounted for.


Other conventional sample and hold error specifications are included in the error and timing specs of the A/D. The hold step and gain error sample/hold specs are taken into account in the ADC0819's total unadjusted error, while the hold settling time is included in the A/D's max conversion time of 32 ϕ_2 clock periods. The hold droop rate can be thought of as being zero since an unlimited amount of time can pass between a conversion and the reading of data. However, once the data is read it is lost and another conversion is tarted.


Typical Applications


ADC0819-INS8048 INTERFACE

TL/H/9287-18

