Block and Connection Diagrams (Continued)

Molded Chip Carrier Package

Top View
See Ordering Information

Top View

Dual-In-Line Package

Top View

Ordering Information

Temperature Range	Total Unadjusted Error		MUX Channels	Package Outline
	$\pm 1 / 2$ LSB	± 1 LSB		
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		ADC0844CCN	4	N20A Molded Dip
	ADC0848BCN	ADC0848CCN	8	$\mathrm{N} 24 \mathrm{C}$ Molded Dip
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	ADC0844BCJ	ADC0844CCJ	4	J20A Cerdip
	ADC0848BCV	ADC0848CCV	8	V28A Molded Chip Carrier

Absolute Maximum Ratings (Notes 1, 2)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V	6.5 V
Voltage	
\quad Logic Control Inputs	-0.3 V to +15 V
At Other Inputs and Outputs	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Input Current at Any Pin (Note 3)	5 mA
Package Input Current (Note 3)	20 mA
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	875 mW
ESD Susceptibility (Note 4)	800 V

Lead Temperature (Soldering, 10 seconds)	
Dual-In-Line Package (Plastic)	$260^{\circ} \mathrm{C}$
Dual-In-Line Package (Ceramic)	$300^{\circ} \mathrm{C}$
Molded Chip Carrier Package	
Vapor Phase (60 seconds)	$215^{\circ} \mathrm{C}$
Infrared (15 seconds)	$220^{\circ} \mathrm{C}$
Operating Conditions (Notes 1, 2)	
Supply Voltage (V_{CC})	4.5 V_{DC} to $6.0 \mathrm{~V}_{\mathrm{DC}}$
Temperature Range	$\mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\text {MAX }}$
ADC0844CCN, ADC0848BCN,	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$
ADC0848CCN	
ADC0844BCJ, ADC0844CCJ,	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$

Electrical Characteristics

The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise specified.Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; all other limits $T_{A}=T_{i}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	ADC0844BCJ ADC0844CCJ			ADC0844CCN ADC0848BCN, ADC0848CCN ADC0848BCV, ADC0848CCV			Limit Units
		Typ (Note 5)	Tested Limit (Note 6)	Design Limit (Note 7)		Tested Limit (Note 6)	Design Limit (Note 7)	
CONVERTER AND MULTIPLEXER CHARACTERISTICS								
Maximum Total Unadjusted Error ADC0844BCN, ADC0848BCN, BCV ADC0844CCN, ADC0848CCN, CCV ADC0844CCJ	$\begin{aligned} & \mathrm{V}_{\text {REF }}=5.00 \mathrm{~V}_{\mathrm{DC}} \\ & \text { (Note 8) } \end{aligned}$		± 1			$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{gathered} \pm 1 / 2 \\ \pm 1 \end{gathered}$	$\begin{aligned} & \text { LSB } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
Minimum Reference Input Resistance		2.4	1.1		2.4	1.2	1.1	$\mathrm{k} \Omega$
Maximum Reference Input Resistance		2.4	5.9		2.4	5.4	5.9	$k \Omega$
Maximum Common-Mode Input Voltage	(Note 9)		$\mathrm{V}_{\mathrm{CC}}+0.05$			$\mathrm{V}_{\mathrm{CC}}+0.05$	$\mathrm{V}_{\mathrm{CC}}+0.05$	V
Minimum Common-Mode Input Voltage	(Note 9)		GND-0.05			GND-0.05	GND-0.05	V
DC Common-Mode Error	Differential Mode	$\pm 1 / 16$	$\pm 1 / 4$		$\pm 1 / 16$	$\pm 1 / 4$	$\pm 1 / 4$	LSB
Power Supply Sensitivity	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%$	$\pm 1 / 16$	$\pm 1 / 8$		$\pm 1 / 16$	$\pm 1 / 8$	$\pm 1 / 8$	LSB
Off Channel Leakage Current	(Note 10) On Channel=5V, Off Channel=0V		-1			-0.1	-1	$\mu \mathrm{A}$
	On Channel=0V, Off Channel=5V		1			0.1	1	$\mu \mathrm{A}$
DIGITAL AND DC CHARACTERISTICS								
$\mathrm{V}_{\mathrm{IN}(1)}$, Logical "1" Input Voltage (Min)	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$		2.0			2.0	2.0	V
$\mathrm{V}_{\mathrm{IN}(0)}$, Logical "0" Input Voltage (Max)	$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$		0.8			0.8	0.8	V
$\mathrm{I}_{\mathrm{IN}(1)}$, Logical "1" Input Current (Max)	$\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$	0.005	1		0.005		1	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{IN}(0)}$, Logical "0" Input Current (Max)	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-0.005	-1		-0.005		-1	$\mu \mathrm{A}$
$\begin{aligned} & \hline \text { V OUT(1), Logical "1" }^{\text {Output Voltage (Min) }} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=-360 \mu \mathrm{~A} \\ & \mathrm{I}_{\text {OUT }}=-10 \mu \mathrm{~A} \end{aligned}$		$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 2.8 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$

Electrical Characteristics (Continued)

The following specifications apply for $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}_{\mathrm{DC}}$ unless otherwise specified.Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$; all other limits $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	ADC0844BCJADC0844CCJ			ADC0844CCN ADC0848BCN, ADC0848CCN ADC0848BCV, ADC0848CCV			Limit Units
		Typ (Note 5)	Tested Limit (Note 6)	Design Limit (Note 7)		Tested Limit (Note 6)	Design Limit (Note 7)	

DIGITAL AND DC CHARACTERISTICS

$\mathrm{V}_{\text {OUT(0) }}$, Logical "0" Output Voltage (Max)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V} \\ & \mathrm{l}_{\mathrm{OUT}}=1.6 \mathrm{~mA} \end{aligned}$		0.4		0.34	0.4	V
${ }^{\text {OUUT, TRI-STATE Output }}$	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-0.01	-3	-0.01	-0.3	-3	$\mu \mathrm{A}$
Current (Max)	$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$	0.01	3	0.01	0.3	3	$\mu \mathrm{A}$
$I_{\text {source }}$, Output Source Current (Min)	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-14	-6.5	-14	-7.5	-6.5	mA
IsINk, Output Sink Current (Min)	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$	16	8.0	16	9.0	8.0	mA
$\mathrm{I}_{\text {CC }}$, Supply Current (Max)	$\begin{aligned} & \overline{\mathrm{CS}}=1, \mathrm{~V}_{\text {REF }} \\ & \text { Open } \end{aligned}$	1	2.5	1	2.3	2.5	mA

AC Electrical Characteristics

The following specifications apply for $\mathrm{V}_{C C}=5 \mathrm{~V}_{\mathrm{DC}}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$ unless otherwise specified. Boldface limits apply from $\mathrm{T}_{\text {MIN }}$ to $T_{\text {MAX }}$; all other limits $T_{A}=T_{j}=25^{\circ} \mathrm{C}$.

Parameter	Conditions	$\begin{gathered} \text { Typ } \\ (\text { Note 5) } \end{gathered}$	Tested Limit (Note 6)	Design Limit (Note 7)	Units
t_{c}, Maximum Conversion Time (See Graph)		30	40	60	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{W}(\overline{\mathrm{WR}})}$, Minimum $\overline{\mathrm{WR}}$ Pulse Width	(Note 11)	50	150		ns
$\mathrm{t}_{\mathrm{ACC}}$, Maximum Access Time (Delay from Falling Edge of $\overline{\mathrm{RD}}$ to Output Data Valid)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \text { (Note 11) } \end{aligned}$	145		225	ns
$\mathrm{t}_{1 \mathrm{H}}, \mathrm{t}_{\mathrm{OH}}$, TRI-STATE Control (Maximum Delay from Rising Edge of $\overline{\mathrm{RD}}$ to Hi-Z State)	$C_{L}=10 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ (Note 11)	125		200	ns
$t_{W I}, t_{\text {RI }}$, Maximum Delay from Falling Edge of $\overline{W R}$ or $\overline{\mathrm{RD}}$ to Reset of INTR	(Note 11)	200	400		ns
t_{DS}, Minimum Data Set-Up Time	(Note 11)	50	100		ns
t_{DH}, Minimum Data Hold Time	(Note 11)	0	50		ns
$\mathrm{C}_{\text {IN }}$, Capacitance of Logic Inputs		5			pF
$\mathrm{C}_{\text {Out }}$, Capacitance of Logic Outputs		5			pF

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to the ground pins.
Note 3: When the input voltage $\left(\mathrm{V}_{\mathbb{I N}}\right)$ at any pin exceeds the power supply rails $\left(\mathrm{V}_{\mathbb{I}}<\mathrm{V}^{-}\right.$or $\left.\mathrm{V}_{\mathbb{I N}}>\mathrm{V}^{+}\right)$the absolute value of the current at that pin should be limited to 5 mA or less. The 20 mA package input current limits the number of pins that can exceed the power supply boundaries with a 5 mA current limit to four.
Note 4: Human body model, 100 pF discharged through a $1.5 \mathrm{k} \Omega$ resistor.
Note 5: Typicals are at $25^{\circ} \mathrm{C}$ and represent most likely parametric norm.
Note 6: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).
Note 7: Design limits are guaranteed by not 100% tested. These limits are not used to calculate outgoing quality levels.
Note 8: Total unadjusted error includes offset, full-scale, linearity, and multiplexer error.
Note 9: For $\mathrm{V}_{\mathbb{I N}}(-) \geq \mathrm{V}_{\mathbb{I N}}(+)$ the digital output code will be 00000000 . Two on-chip diodes are tied to each analog input, which will forward-conduct for analog input voltages one diode drop below ground or one diode drop greater than $\mathrm{V}_{C C}$ supply. Be careful during testing at low V_{CC} levels (4.5V), as high level analog inputs (5 V) can cause this input diode to conduct, especially at elevated temperatures, and cause errors for analog inputs near full-scale. The spec allows 50 mV forward bias of either diode. This means that as long as the analog V_{IN} does not exceed the supply voltage by more than 50 mV , the output code will be correct. To achieve an absolute $0 \mathrm{~V}_{\mathrm{DC}}$ to $5 \mathrm{~V}_{\mathrm{DC}}$ input voltage range will therefore require a minimum supply voltage of $4.950 \mathrm{~V}_{\mathrm{DC}}$ over temperature variations, initial tolerance and loading Note 10: Off channel leakage current is measured after the channel selection.
Note 11: The temperature coefficient is $0.3 \% /{ }^{\circ} \mathrm{C}$.

Typical Performance Characteristics

Output Current vs Temperature

Power Supply Current vs Temperature

Linearity Error vs $\mathrm{V}_{\text {REF }}$

Conversion Time vs $\mathbf{V}_{\text {supply }}$

Unadjusted Offset Error vs $\mathrm{V}_{\text {REF }}$ Voltage

TRI-STATE Test Circuits and Waveforms

Leakage Current Test Circuit

Timing Diagrams

Note 12: Read strobe must occur at least 600 ns after the assertion of interrupt to guarantee reset of $\overline{\mathrm{NTR}}$. Note 13: MA stands for MUX address.

Using the Previously Selected Channel Configuration and Starting a Conversion

ADC0848 Functional Block Diagram

Functional Description

The ADC0844 and ADC0848 contain a 4-channel and 8-channel analog input multiplexer (MUX) respectively. Each MUX can be configured into one of three modes of operation differential, pseudo-differential, and single ended. These modes are discussed in the Applications Information Section. The specific mode is selected by loading the MUX address latch with the proper address (see Table 1 and Table 2). Inputs to the MUX address latch (MA0-MA4) are common with data bus lines (DB0-DB4) and are enabled when the $\overline{\mathrm{RD}}$ line is high. A conversion is initiated via the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ lines. If the data from a previous conversion is not read, the INTR line will be low. The falling edge of $\overline{W R}$ will reset the $\overline{\text { NTR }}$ line high and ready the A/D for a conversion cycle. The rising edge of $\overline{W R}$, with RD high, strobes the data on the MAO/ DB0-MA4/DB4 inputs into the MUX address latch to select a new input configuration and start a conversion. If the $\overline{R D}$ line is held low during the entire low period of WR the previous MUX configuration is retained, and the data of the previous conversion is the output on lines DB0-DB7. After the conversion cycle ($\mathrm{t}_{\mathrm{c}} \leq 40 \mu \mathrm{~s}$), which is set by the internal clock frequency, the digital data is transferred to the output latch and the $\overline{\mathrm{NTR}}$ is asserted low. Taking $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ low resets $\overline{\mathrm{NTR}}$ output high and outputs the conversion result on the data lines (DB0-DB7).

Applications Information

1.0 MULTIPLEXER CONFIGURATION

The design of these converters utilizes a sampled-data comparator structure which allows a differential analog input to be converted by a successive approximation routine.

The actual voltage converted is always the difference between an assigned "+" input terminal and a "-" input terminal. The polarity of each input terminal of the pair being converted indicates which line the converter expects to be the most positive. If the assigned " + " input is less than the " - " input the converter responds with an all zeros output code. A unique input multiplexing scheme has been utilized to provide multiple analog channels. The input channels can be software configured into three modes: differential, single ended, or pseudo-differential. Figure 1 shows the three modes using the 4 -channel MUX ADC0844. The eight inputs of the ADC0848 can also be configured in any of the three modes. In the differential mode, the ADC0844 channel inputs are grouped in pairs, CH 1 with CH 2 and CH 3 with CH 4 . The polarity assignment of each channel in the pair is interchangeable. The single-ended mode has $\mathrm{CH} 1-\mathrm{CH} 4$ assigned as the positive input with the negative input being the analog ground (AGND) of the device. Finally, in the pseudo-differential mode $\mathrm{CH} 1-\mathrm{CH} 3$ are positive inputs referenced to CH 4 which is now a pseudo-ground. This pseudo-ground input can be set to any potential within the input common-mode range of the converter. The analog signal conditioning required in transducer-based data acquisition systems is significantly simplified with this type of input flexibility. One converter package can now handle ground referenced inputs and true differential inputs as well as signals with some arbitrary reference voltage.
The analog input voltages for each channel can range from 50 mV below ground to 50 mV above V_{CC} (typically 5 V) without degrading conversion accuracy.

TABLE 1. ADC0844 MUX ADDRESSING

MUX Address				$\overline{\mathrm{CS}}$	$\overline{\mathrm{WR}}$	$\overline{\mathrm{RD}}$	Channel\#					MUX Mode
MA3	MA2	MA1	MAO				CH1	CH2	CH3	CH4	AGND	
X	L	L	L	L		H	+	-				
X	L	L	H	L	マ	H	-	+				Differential
X	L	H	L	L		H			+	-		
X	L	H	H	L		H			-	+		
L	H	L	L	L		H	+				-	
L	H	L	H	L	u	H		+			-	Single-Ended
L	H	H	L	L		H			+		-	
L	H	H	H	L		H				+	-	
H	H	L	L	L		H	+			-		Pseudo-
H	H	L	H	L	v	H		+		-		Differential
H	H	H	L	L		H			+	-		
X	X	X	X	L	U	L	Previous Channel Configuration					

$\mathrm{X}=$ don't care

Applications Information (Continued)

FIGURE 1. Analog Input Multiplexer Options

2.0 REFERENCE CONSIDERATIONS

The voltage applied to the reference input of these converters defines the voltage span of the analog input (the difference between $\mathrm{V}_{\operatorname{IN}(\text { MAX })}$ and $\left.\mathrm{V}_{\operatorname{IN}(\operatorname{MIN})}\right)$ over which the 256 possible output codes apply. The devices can be used in either ratiometric applications or in systems requiring absolute accuracy. The reference pin must be connected to a voltage source capable of driving the minimum reference input resistance of $1.1 \mathrm{k} \Omega$. This pin is the top of a resistor divider string used for the successive approximation conversion.
In a ratiometric system (Figure 2a), the analog input voltage is proportional to the voltage used for the A/D reference. This voltage is typically the system power supply, so the $\mathrm{V}_{\text {REF }}$ pin can be tied to V_{cc}. This technique relaxes the stability requirements of the system reference as the analog input and A/D reference move together maintaining the same output code for a given input condition.
For absolute accuracy (Figure 2b), where the analog input varies between very specific voltage limits, the reference pin can be biased with a time and temperature stable voltage source. The LM385 and LM336 reference diodes are good low current devices to use with these converters.
The maximum value of the reference is limited to the V_{CC} supply voltage. The minimum value, however, can be quite small (see Typical Performance Characteristics) to allow direct conversions of transducer outputs providing less than a 5 V output span. Particular care must be taken with regard to noise pickup, circuit layout and system error voltage sources when operating with a reduced span due to the increased sensitivity of the converter (1 LSB equals $\mathrm{V}_{\text {REF }} / 256$).

3.0 THE ANALOG INPUTS

3.1 Analog Differential Voltage Inputs and Common-Mode Rejection

The differential input of these converters actually reduces the effects of common-mode input noise, a signal common to both selected " + " and " - " inputs for a conversion $(60 \mathrm{~Hz}$ is
most typical). The time interval between sampling the " + " input and then the "-" inputs is $1 / 2$ of a clock period. The change in the common-mode voltage during this short time interval can cause conversion errors. For a sinusoidal common-mode signal this error is:

$$
\mathrm{V}_{\mathrm{ERROR}}(\mathrm{MAX})=\mathrm{V}_{\text {peak }}\left(2 \pi \mathrm{f}_{\mathrm{CM}}\right) \times \underset{\mathrm{DS} 005016-38}{0.5} \times\left(\frac{\mathrm{t}_{\mathrm{C}}}{8}\right)
$$

where $f_{C M}$ is the frequency of the common-mode signal, $V_{\text {peak }}$ is its peak voltage value and t_{C} is the conversion time. For a 60 Hz common-mode signal to generate a $1 / 4 \mathrm{LSB}$ error $(\approx 5 \mathrm{mV})$ with the converter running at $40 \mu \mathrm{~S}$, its peak value would have to be 5.43 V . This large a common-mode signal is much greater than that generally found in a well designed data acquisition system

Applications Information (Continued)

TABLE 2. ADC0848 MUX Addressing

MUX Address					$\overline{\mathrm{CS}}$	$\overline{\text { WR }}$	$\overline{\mathbf{R D}}$	Channel									$\begin{aligned} & \text { MUX } \\ & \text { Mode } \end{aligned}$
MA4	MA3	MA2	MA1	MAO				CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8	AGND	
X	L	L	L	L	L		H	+	-								
X	L	L	L	H	L		H	-	+								
X	L	L	H	L	L		H			+	-						
X	L	L	H	H	L	v	H			-	+						Differential
X	L	H	L	L	L		H					+	-				
X	L	H	L	H	L		H					-	+				
X	L	H	H	L	L		H							+	-		
X	L	H	H	H	L		H							-	+		
L	H	L	L	L	L		H	+								-	
L	H	L	L	H	L		H		+							-	
L	H	L	H	L	L		H			+						-	
L	H	L	H	H	L	บ	H				+					-	Single-Ended
L	H	H	L	L	L		H					+				-	
L	H	H	L	H	L		H						+			-	
L	H	H	H	L	L		H							+		-	
L	H	H	H	H	L		H								+	-	
H	H	L	L	L	L		H	+							-		
H	H	L	L	H	L		H		+						-		
H	H	L	H	L	L		H			+					-		Pseudo-
H	H	L	H	H	L	v	H				+				-		Differential
H	H	H	L	L	L		H					+			-		
H	H	H	L	H	L		H						+		-		
H	H	H	H	L	L		H							+	-		
X	X	X	X	X	L	च	L			Prev	ous C	annel	Config	uration			

3.2 Input Current

Due to the sampling nature of the analog inputs, short duration spikes of current enter the " + " input and exit the " - " input at the clock edges during the actual conversion. These currents decay rapidly and do not cause errors as the internal comparator is strobed at the end of a clock period. Bypass capacitors at the inputs will average these currents and cause an effective DC current to flow through the output resistance of the analog signal source. Bypass capacitors should not be used if the source resistance is greater than $1 \mathrm{k} \Omega$.

3.3 Input Source Resistance

The limitation of the input source resistance due to the DC leakage currents of the input multiplexer is important. A worst-case leakage current of $\pm 1 \mu \mathrm{~A}$ over temperature will create a 1 mV input error with a $1 \mathrm{k} \Omega$ source resistance. An op amp RC active low pass filter can provide both impedance buffering and noise filtering should a high impedance signal source be required.

4.0 OPTIONAL ADJUSTMENTS

4.1 Zero Error

The zero of the A/D does not require adjustment. If the minimum analog input voltage value, $\mathrm{V}_{\operatorname{IN}(\operatorname{MIN})}$, is not ground, a zero offset can be done. The converter can be made to out-
put 00000000 digital code for this minimum input voltage by biasing any $\mathrm{V}_{\mathrm{IN}}(-)$ input at this $\mathrm{V}_{\operatorname{IN}(\operatorname{MIN})}$ value. This is useful for either differential or pseudo-differential modes of input channel configuration.
The zero error of the A/D converter relates to the location of the first riser of the transfer function and can be measured by grounding the V^{-}input and applying a small magnitude positive voltage to the V^{+}input. Zero error is the difference between actual DC input voltage which is necessary to just cause an output digital code transition from 00000000 to 00000001 and the ideal $1 / 2$ LSB value ($1 / 2$ LSB $=9.8 \mathrm{mV}$ for $\mathrm{V}_{\mathrm{REF}}=5.000 \mathrm{~V}_{\mathrm{DC}}$).

4.2 Full-Scale

The full-scale adjustment can be made by applying a differential input voltage which is $11 / 2$ LSB down from the desired analog full-scale voltage range and then adjusting the magnitude of the $\mathrm{V}_{\text {REF }}$ input for a digital output code changing from 11111110 to 11111111.

4.3 Adjusting for an Arbitrary Analog Input Voltage

 RangeIf the analog zero voltage of the A/D is shifted away from ground (for example, to accommodate an analog input signal which does not go to ground), this new zero reference should be properly adjusted first. $\mathrm{A} \mathrm{V}_{\mathrm{IN}}(+)$ voltage which equals this desired zero reference plus $1 / 2$ LSB (where the

Applications Information (Continued)

LSB is calculated for the desired analog span, $1 \mathrm{LSB}=$ analog span/256) is applied to selected "+" input and the zero

a) Ratiometric
reference voltage at the corresponding "-" input should then be adjusted to just obtain the $00_{\text {HEX }}$ to $01_{\text {HEX }}$ code transition.

b) Absolute with a Reduced Span

FIGURE 2. Referencing Examples

The full-scale adjustment should be made [with the proper $\mathrm{V}_{\mathrm{IN}}(-)$ voltage applied] by forcing a voltage to the $\mathrm{V}_{\mathrm{IN}}(+)$ input which is given by:

$$
\mathrm{V}_{\text {IN }}(+) \text { fs adj }=\mathrm{V}_{\mathrm{MAX}}-1.5\left[\frac{\left(\mathrm{~V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}\right)}{256}\right]
$$

The $\mathrm{V}_{\text {REF }}$ (or V_{CC}) voltage is then adjusted to provide a code change from $\mathrm{FE}_{\text {HEX }}$ to $\mathrm{FF}_{\text {HEX }}$. This completes the adjustment procedure.
For an example see the Zero-Shift and Span Adjust circuit below.
where $\mathrm{V}_{\text {MAX }}=$ the high end of the analog input range and $\mathrm{V}_{\text {MIN }}=$ the low end (the offset zero) of the analog range. (Both are ground referenced.)

Zero-Shift and Span Adjust ($2 \mathbf{V} \leq \mathbf{V}_{\text {IN }} \leq 5 \mathrm{~V}$)

Applications Information (Continued)

$\mathrm{DO}=$ all 1 s if $\mathrm{V}_{\operatorname{IN}}(+)>\mathrm{V}_{\operatorname{IN}}(-)$
$D O=$ all 0 s if $\mathrm{V}_{\text {IN }}(+)<\mathrm{V}_{\text {IN }}(-)$

${ }^{*} \mathrm{~V}_{\text {IN }}(-)=0.15 \mathrm{~V}_{\mathrm{CC}}$
15% of $V_{C C} \leq V_{X D R} \leq 85 \%$ of $V_{C C}$

Applications Information (Continued)

Note: DUT pin numbers in parentheses are for ADC0844, others are for ADC0848.

Start a Conversion without Updating the Channel Configuration

[^0]$\overline{\mathrm{CS}} \cdot \overline{\mathrm{RD}}$ will read the conversion data and start a new conversion without updating the channel configuration.
Waiting for the end of this conversion is not necessary. $\mathrm{A} \overline{\mathrm{CS}} \cdot \overline{\mathrm{WR}}$ can immediately follow the $\overline{\mathrm{CS}} \cdot \overline{\mathrm{RD}}$.

Applications Information (Continued)

SAMPLE PROGRAM FOR ADC0844 - INS8039 INTERFACE CONVERTING TWO RATIOMETRIC, DIFFERENTIAL SIGNALS

			ORG	OH	
0000	0410		JMP	BEGIN	;START PROGRAM AT ADDR 10
			ORG	10 H	;MAIN PROGRAM
0010	B9 FF	BEGIN:	MOV	R1,\#0FFH	;LOAD R1 WITH A UNUSED ADDR ;LOCATION
0012	B8 20		MOV	R0,\#20H	;A/D DATA ADDRESS
0014	89 FF		ORL	P1,\#0FFH	;SET PORT 1 OUTPUTS HIGH
0016	2300		MOV	A, 00 H	;LOAD THE ACC WITH A/D MUX DATA ;CH1 AND CH2 DIFFERENTIAL
0018	1450		CALL	CONV	;CALL THE CONVERSION SUBROUTINE
001A	2302		MOV	A,\#02H	;LOAD THE ACC WITH A/D MUX DATA ;CH3 AND CH4 DIFFERENTIAL
001C	18		INC	R0	;INCREMENT THE A/D DATA ADDRESS
001D	1450		CALL	CONV	;CALL THE CONVERSION SUBROUTINE
			;CONTINUE MAIN PROGRAM		
			;CONV ;ENTR ;EXIT:	SUBROUT -A/D MUX CONVERTE	
			ORG	50 H	
0050	99 FE	CONV:	ANL	P1,\#0FEH	;CHIP SELECT THE A/D
0052	91		MOVX	@R1,A	;LOAD A/D MUX \& START CONVERSION
0053	09	LOOP:	IN	A,P1	;INPUT INTR STATE

Physical Dimensions inches (millimeters) unless otherwise noted

Ceramic Dual-In-Line Package (J) NS Package Number J20A

Molded Dual-In-Line Package (N) NS Package Number N20A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

[^0]: $\overline{\mathrm{CS}} \cdot \overline{\mathrm{WR}}$ will update the channel configuration and start a conversion.

