

High Performance ISM Band ASK/FSK Transmitter IC

Preliminary Technical Data

ADF7901

FEATURES

Single chip low power UHF transmitter
369.5 MHz to 395.9 MHz frequency operation using Fractional-N
PLL and fully integrated VCO
3.0 V supply voltage
Data rates supported < 2.5 kbps
Low current consumption 26 mA at 12 dBm
Output at 384 MHz
Power-down mode (< 1 µA)
24-Lead TSSOP package

GENERAL DESCRIPTION

The ADF7901 is a low power OOK/FSK UHF transmitter designed for use in RF Remote Control Devices. The device

is capable of Frequency Shift Keying (FSK) modulation on 8 different channels, selectable by 3 external control lines. OOK modulation is performed by modulating the PA control line.

The on-chip VCO operates at 2 × the output frequency. The divide by 2 at the output of the VCO reduces the amount of PA feedthrough. As a result of this, OOK modulation depths of greater than 50 dB are easily achievable.

The FSK_ADJ and ASK_ADJ resistors can be adjusted in the system to optimize output power, for each modulation scheme. An additional 1.5 dB of output power is provided for the lower bank of channels to adjust for antenna performance. The CE line allows the transmitter to be powered down completely. In this mode, the leakage current is typically $0.1~\mu A$.

FUNCTIONAL BLOCK DIAGRAM

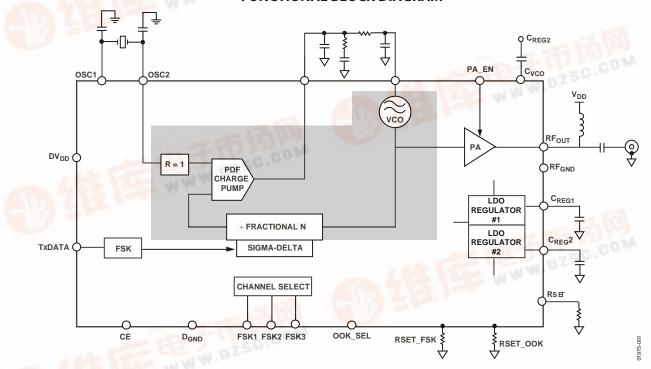


Figure 1.

Preliminary Technical Data

TABLE OF CONTENTS

Specifications	3
Absolute Maximum Ratings	5
ESD Caution	5
Pin Configuration and Function Descriptions	6
Typical Performance Characteristics	8
Circuit Description	9
Internal Register Settings	9
Loop Filter	9
Layout Guidelines	10

	Decoupling	10
	Regulator Stability	10
	Grounding	10
	Supply	10
	Digital Lines	10
Out	tline Dimensions	11
C	Ordering Guide	11

REVISION HISTORY

1/05—Revision PrD

SPECIFICATIONS

 V_{DD} = 3.0 V; GND = 0 V; T_A = T_{MIN} to T_{MAX} unless otherwise noted. Typical specifications T_A = 25°C.

Table 1.

Parameter ¹	Min	Тур	Max	Unit
RF CHARACTERISTICS				
Output Frequency Ranges				
Channel 1		369.5		MHz
Channel 2		371.1		MHz
Channel 3		375.3		MHz
Channel 4		376.9		MHz
Channel 5		384.0		MHz
Channel 6		388.3		MHz
Channel 7		391.5		MHz
Channel 8		394.3		MHz
Channel 9		395.9		MHz
Phase Frequency Detector Frequency		9.8304		MHz
TRANSMISSION PARAMETERS				
Transmit Rate				
FSK		2		kbps
OOK		2.5		kbps
Frequency Shift Keying				
FSK Separation ²		-34.8		kHz, Data = 1
		+34.8		kHz, Data = 0
On/Off Keying				
Modulation Depth ³		83		dB, Output Power = 12 dBm
Output Power				
Min/Max Range ⁴		15		dB
fout ≤ 384 MHz	10	12		dBm
$f_{OUT} > 384 \text{ MHz}$	7	10.5		dBm
Occupied 20 dB BW				
OOK at 1 kbits/s		±28	±461.9	kHz
FSK (PA Off/On) at10 Hz⁵		±26	±461.9	kHz
LOGIC INPUTS				
V _{INH} , Input High Voltage	2.124			V
V _{INL} , Input Low Voltage			$0.2 \times V_{DD}$	V
I _{INH} /I _{INL} , Input Current			±1	μΑ
C _{IN} , Input Capacitance			10	pF
POWER SUPPLIES				
Voltage Supply				
DV_{DD}		3.0		V
Transmit Current Consumption				
369.5-376.9 MHz at +12 dBm		26		mA
384 MHz at +12 dBm		26		mA
388.3-395.9 MHz at +10.5 dBm		21		mA
384 MHz at +5 dBm		17		mA
Power-Down Mode				
Low Power Sleep Mode ⁶		0.2	1	μΑ

Preliminary Technical Data

Parameter ¹	Min	Тур	Max	Unit	
PHASE-LOCKED LOOP					
VCO Gain		30		MHz/V at 384 MHz	
Spurious ^{7,}				100 kHz loop BW	
Integer Boundary		-45	-23	dBc	
Reference		-70	-23	dBc	
Harmonics					
Second Harmonic $V_{DD} = 3.0 \text{ V}$		-24	-21	dBc	
Third Harmonic $V_{DD} = 3.0 \text{ V}$		-14	-11	dBc	
All Other Harmonics			-18	dBc	
REFERENCE INPUT					
Crystal Reference 9.8304			MHz		
POWER AMPLIFIER					
PA Output Impedance		97 Ω + 6.4 pF		At 384 MHz	
TIMING INFORMATION					
Crystal Oscillator to PLL Lock		2	3	ms	
PA Enable to PA ready–PLL Settle8		100	250	μs	
TEMPERATURE RANGE – T _A	0		50	°C	

 $^{^1}$ Operating temperature range is as follows: 0°C to +50°C. 2 Frequency Deviation = 34 × (9.8304 MHz)/214. Error in the crystal will be reflected in variation in the desired deviation. 3 Not production tested. Based on characterization.

⁴ The output power can be varied in both ASK/FSK mode by altering the relevant external resistor.
⁵ Measured using Spectrum Analyzer, 1 MHz span, 100 kHz RBW, MAX HOLD enabled.
⁶ Maximum power-down current spec applies for the OSC2 pin grounded.

⁷ Measured > 461.9 kHz away from channel.

⁸ This spec refers to the time taken for the PLL to regain lock after the PA has been enabled. The PA is should only be enabled after the PLL has settled to the correct frequency.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 2.

Parameter ¹	Value
VDD to GND ²	−0.3 V to +4.0 V
RFVDD to GND	−0.3 V to +4.0 V
Digital I/O Voltage to GND	−0.3 V to VDD + 0.3 V
Operating Temperature Range	
Industrial (B Version)	0°C to +50°C
Storage Temperature Range	−65°C to +125°C
Maximum Junction Temperature	125°C
TSSOP θJA Thermal Impedance	150.4°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	235°C
Infrared (15 sec)	240°C
·	·

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

¹ This device is a high performance RF integrated circuit with an ESD rating of <1 kV and it is ESD sensitive. Proper precautions should be taken for handling and assembly.

 $^{^{2}}$ GND = $\tilde{R}FGND$ = DGND = 0 V.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

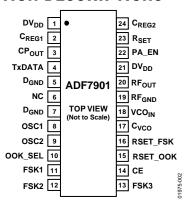


Figure 2. Pin Configuration

Table 3. Pin Function Descriptions

Table 3.	Table 3. Pin Function Descriptions					
Pin No.	Mnemonic	Function				
1	DV _{DD}	Positive Supply for the Digital Circuitry. This must be 3.0 V. Decoupling capacitors to the analog ground plane should be placed as close as possible to this pin.				
2	C _{REG1}	A 2.2 μ F capacitor should be added at C_{REG} to reduce regulator noise and improve stability. A reduced capacitor will improve regulator power-on time but may cause higher spurious.				
3	СРоит	Charge Pump Output. This output generates current pulses that are integrated in the loop filter. The integrated current changes the control voltage on the input to the VCO.				
4	TxDATA	Digital FSK data to be transmitted is inputted on this pin.				
5	D _{GND}	Ground for Digital Section.				
6	NC	No Connect.				
7	D_{GND}	Ground for Digital Section.				
8	OSC1	The reference crystal should be connected between this pin and OSC2. The necessary crystal load capacitor should be tied between this pin and ground.				
9	OSC2	The reference crystal should be connected between this pin and OSC1. The necessary crystal load capacitor should be tied between this pin and ground.				
10	OOK_SEL	A high on this pin selects operation in OOK mode at 384 MHz when CE is high.				
11	FSK1	FSK Channel Select Pin. This represents the LSB of the channels select pins				
12	FSK2	FSK Channel Select Pin.				
13	FSK3	FSK Channel Select Pin.				
14	CE	Bringing CE low puts the ADF7901 into power-down drawing $< 1~\mu A$ of current.				
15	RSET_OOK	The value of this resistor sets the output power for data = 1 in OOK mode. A resistor of 3.6 k Ω will provide the maximum output power. Increasing the resistor will reduce the power and the current consumption. A lower resistor value than 3.6 k Ω can be used to increase the power to a maximum of +14 dBm. The PA will not be operating efficiently in this mode.				
16	RSET_FSK	The value of this resistor sets the output power in FSK mode. A resistor of 3.6 k Ω will provide max output power. Increasing the resistor will reduce the power and the current consumption. A lower resistor value than 3.6 k Ω can be used to increase the power to a maximum of +14 dBm. The PA will not be operating efficiently in this mode.				
17	Cvco	A 220 nF capacitor should be tied between C _{VCO} and C _{REG2} pin. This line should run underneath the ADF7901. This capacitor is necessary to ensure stable VCO operation.				
18	VCO _{IN}	The tuning voltage on this pin determines the output frequency of the Voltage Controlled Oscillator (VCO). The higher the tuning voltage the higher the output frequency. The output of the loop filter is connected here.				
19	RF _{GND}	Ground for Output Stage of Transmitter.				
20	RF _{OUT}	The modulated signal is available at this pin. Output power levels are from –5 dBm to +12 dBm. The output should be impedance matched using suitable components to the desired load.				
21	DV_{DD}	Voltage Supply for VCO, and PA section. This should be supplied with 3.0 V. Decoupling capacitors to the ground				

Preliminary Technical Data

ADF7901

Pin No.	Mnemonic	Function
		plane should be placed as close as possible to this pin.
22	PA_EN	This pin is used to enable the Power Amplifier. This should be modulated with the OOK data in OOK mode. In FSK mode, it should be enabled when the PLL is locked.
23	R _{SET}	External resistor to set charge pump current and some internal bias currents. Use 3.6 k Ω as default.
24	C _{REG2}	A 2.2 μ F capacitor should be added at C _{REG} to reduce regulator noise and improve stability. A reduced capacitor will improve regulator power-on time but may cause higher spurious.

TYPICAL PERFORMANCE CHARACTERISTICS

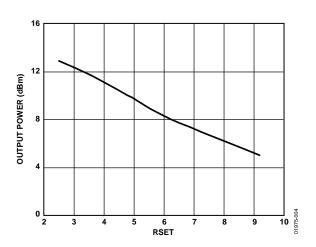


Figure 3. Output Power vs. R_{SET} FSK, Upper FSK Channels, Measured into 50 Ω

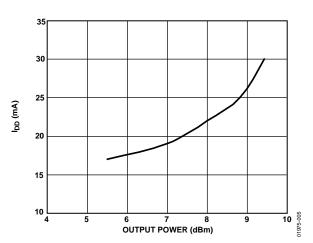


Figure 4. Current Consumption vs. Output Power, Upper FSK Channels, Measured into 50 Ω

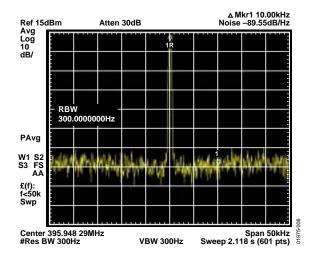


Figure 5. Phase Noise at Channel 9

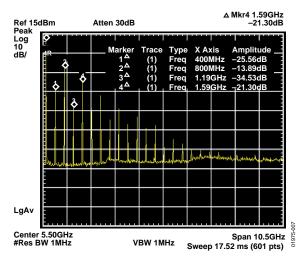


Figure 6. Harmonic Levels–Up to 4th Harmonic. Measured at Channel 9

CIRCUIT DESCRIPTION

Table 4.

Frequency MHz	FSK3	FSK2	FSK1	OOK_SEL
369.5	0	0	0	0
371.1	0	0	1	0
375.3	0	1	0	0
376.9	0	1	0	0
384.0	Χ	Χ	Χ	1
388.3	1	0	0	0
391.5	1	0	1	0
394.3	1	1	0	0
395.9	1	1	1	0

INTERNAL REGISTER SETTINGS

Based on PFD = 9.8304 MHz

REG0

Error Correction 0

R Value 1

XOE 1 (Enabled)

Clock Out 0 (Disabled)

REG1

Ch #1 Integer = 37, Frac = 2406

Ch #2 Integer = 37, Frac = 3073

Ch #3 Integer = 38, Frac = 727

Ch #4 Integer = 38, Frac = 1394

Ch #5(OOK) Integer = 39, Frac = 256

Ch #6 Integer = 39, Frac = 2048

Ch #7 Integer = 39, Frac = 3381

Ch #8 Integer = 40, Frac = 452

Ch #9 Integer = 40, Frac = 1118

VCO Band 1 (Divide-by-2)

LD Precision 1 (Don't care)

REG2

Mod Scheme 0 (FSK)

PA (External R)

Mod Deviation 58 (±35 kHz)

Prescaler 0 (4/5)

REG3

PLL Enable 1

PA Enable (PA_EN Line)

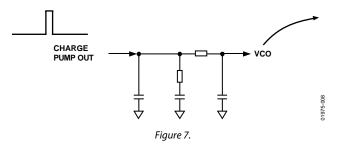
CLKout EN 0 (Off)

Data Invert 0

Charge Pump 1 (3/7)

CP Bleed 0

MuxOut 0


VCOBias 3

PA Bias External R

VCO Band (Switched)

LOOP FILTER

The loop filter integrates the current pulses from the charge pump to form a voltage that tunes the output of the VCO to the desired frequency. It also attenuates spurious levels generated by the PLL. The loop filter design recommended on this design is 300 kHz. This is based on the trade-off between attenuation of beat note spurious and the need to minimize chirp when the PA is turned on.

C1 = 680 pF

C2 = 15 nF

C3 = 150 pF

 $R1 = 120 \Omega$

 $R2 = 3.3 \text{ k}\Omega$

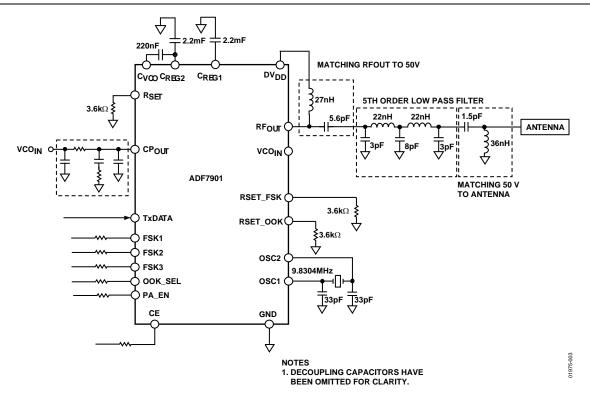


Figure 8. Applications Diagram for the ADF7901 in a Remote Control System

LAYOUT GUIDELINES

The layout of the board is crucial to ensuring low levels of spurious and harmonics.

Decoupling

Decoupling capacitors (high frequency 22 pF, low frequency $100~\rm nF$) should be placed as close as possible to the supply pins on the part. Low size $0402~\rm and~0603$ components are recommended for the high frequency rejection on the supply.

Regulator Stability

A minimum of 1 μ F is needed on both C_{REG1} and C_{REG2} to ensure stability. An additional 22 pF capacitor can be added to reject higher frequency noise. Since many of the internal block run off the regulator it is critical to reduce the noise on this. Low size 0402 and 0603 components are recommended for the high frequency rejection on the supply.

Grounding

Emphasis should be placed on the grounding once the decoupling capacitors have been added. The PA stage switches currents of 15 mA in max power mode. This will cause changes in the ground resulting in large return currents which can radiate to other parts of the board. The shortest and least obstructed ground from RFGND back to the ground of the battery should be ensured. A 4-layer board will help, as well as flooding of the top layer. The ground paths should not have any vias, and should be wide tracks.

Supply

The supply tracks can be routed through vias, as these act as free inductors on the board and make layout easier on a 2-layer board. See the Decoupling section. Tracks should be wide.

Digital Lines

Any digital lines should contain a large resistor in series. This impedance will block signals of many frequencies including harmonics and the carrier frequency. Long control lines can act as an antenna. It can be useful to add capacitance to ground. There will be some capacitance to ground provided by the lines, and at the input of the digital pins.

OUTLINE DIMENSIONS

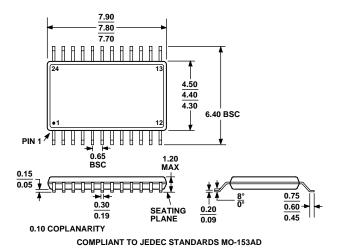


Figure 9. 24-Lead Thin Shrink Small Outline Package [TSSOP] (RU-24) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADF7901BRU	0°C to +50°C	24-Lead Thin Shrink Small Outline Pacakage [TSSOP]	RU-24

Preliminary Technical Data

NOTES

