
Low Voltage 400 MHz Quad 2:1 Mux with 3 ns Switching Time

ADG774A

FEATURES

Bandwidth >400 MHz Low Insertion Loss and On Resistance: 2.2 Ω Typical On-Resistance Flatness 0.3 Ω Typical Single 3 V/5 V Supply Operation Very Low Distortion: <0.3% Low Quiescent Supply Current (1 nA Typical) Fast Switching Times t_{ON} 6 ns t_{OFF} 3 ns TTL/CMOS Compatible

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The ADG774A is a monolithic CMOS device comprising four 2:1 multiplexer/demultiplexers with high impedance outputs. The CMOS process provides low power dissipation yet gives high switching speed and low on resistance. The on-resistance variation is typically less than 0.5Ω over the input signal range.

The bandwidth of the ADG774A is typically 400 MHz and this, coupled with low distortion (typically 0.3%), makes the part suitable for switching of high-speed data signals.

The on-resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion. CMOS construction ensures ultralow power dissipation.

The ADG774A operates from a single 3.3 V/5 V supply and is TTL logic compatible. The control logic for each switch is shown in the Truth Table.

These switches conduct equally well in both directions when ON. In the OFF condition, signal levels up to the supplies are blocked. The ADG774A switches exhibit break-before-make switching action.

PRODUCT HIGHLIGHTS

- 1. Wide bandwidth data rates >400 MHz.
- 2. Ultralow Power Dissipation.
- 3. Low leakage over temperature.
- Break-Before-Make Switching. This prevents channel shorting when the switches are configured as a multiplexer.
- 5. Crosstalk is typically -70 dB @ 10 MHz.
- 6. Off isolation is typically –65 dB @ 10 MHz.

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

ADG774A-SPECIFICATIONS

SINGLE SUPPLY¹ ($V_{DD} = 5 V \pm 10\%$, GND = 0 V. All specifications T_{MIN} to T_{MAX} unless otherwise noted.)

Parameter	E 25°C	B Version T _{MIN} to T _{MAX}	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 to 2.5	V	
On Resistance (R _{ON})	2.2		Ω typ	$V_{\rm D} = 0$ V to 1 V; $I_{\rm S} = -10$ mA
	3.5	4	Ω max	
On Resistance Match Between				
Channels (ΔR_{ON})	0.15		Ω typ	$V_D = 0 V$ to 1 V; $I_S = -10 mA$
		0.5	Ω max	
On Resistance Flatness (R _{FLAT(ON)})	0.3		Ω typ	$V_{\rm D} = 0$ V to 1 V; $I_{\rm S} = -10$ mA
		0.6	Ω max	
LEAKAGE CURRENTS				
Source OFF Leakage I _S (OFF)	±0.001		nA typ	$V_D = 3 V, V_S = 1 V; V_D = 1 V, V_S = 3 V;$
	±0.1	±0.25	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	± 0.001		nA typ	$V_D = 3 V, V_S = 1 V; V_D = 1 V, V_S = 3 V;$
0 2 ()	±0.1	± 0.25	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	±0.001		nA typ	$V_D = V_S = 3 V$; $V_D = V_S = 1 V$; Test Circuit 3
	± 0.1	±0.25	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current		0.00	,	
I _{INL} or I _{INH}	0.001		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		± 0.1	μA max	
C _{IN} , Digital Input Capacitance		3	pF typ	
DYNAMIC CHARACTERISTICS ²				
t_{ON}, t_{ON} (EN)		6	ns typ	$C_{\rm L} = 35 \text{ pF}, R_{\rm L} = 50 \Omega;$
		12	ns max	$V_8 = 2 V$; Test Circuit 4
t_{OFF}, t_{OFF} (\overline{EN})		3	ns typ	$C_{L} = 35 \text{ pF}, R_{L} = 50 \Omega;$
		6	ns max	$V_s = 2 V$; Test Circuit 4
Break-Before-Make Time Delay, t _D		3	ns typ	$C_{L} = 35 \text{ pF}, R_{L} = 50 \Omega;$
-		1	ns min	$V_{S1} = V_{S2} = 2 V$; Test Circuit 5
Off Isolation		-65	dB typ	f = 10 MHz; R_L = 50 Ω ; Test Circuit 7
Channel-to-Channel Crosstalk		-70	dB typ	f = 10 MHz; R_L = 50 Ω ; Test Circuit 8
Bandwidth –3 dB		400	MHz typ	Test Circuit 6, $R_L = 50 \Omega$;
Distortion		0.3	% typ	$R_L = 100 \Omega$
Charge Injection		6	pC typ	$C_L = 1 \text{ nF}$; Test Circuit 9, $V_S = 0 \text{ V}$
C _S (OFF)		5	pF typ	
C _D (OFF)		7.5	pF typ	
$C_D, C_S(ON)$		12	pF typ	
POWER REQUIREMENTS				V_{DD} = 5.5 V Digital Inputs = 0 V or V_{DD}
I _{DD}		1	μA max	
	0.001	-	μA typ	

NOTES

¹Temperature ranges are as follows: B Version, -40° C to $+85^{\circ}$ C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

SINGLE SUPPLY ¹	$(V_{DD} = 3 \text{ V} \pm 10\%, \text{ GND} = 0 \text{ V}.$ All specifications T_{MIN} to T_{MAX} unless otherwise noted.)
SINULL SUI I LI	$(v_{DD} = 5 v \pm 10 $, and $v = 0 v$. An specifications T_{MIN} to T_{MAX} unless otherwise noted.)

V to 1 V; $I_S = -10 \text{ mA}$ V to 1 V; $I_S = -10 \text{ mA}$ V to 1 V; $I_S = -10 \text{ mA}$ V to 1 V; $I_S = -10 \text{ mA}$
V to 1 V; $I_{s} = -10 \text{ mA}$
V to 1 V; $I_{s} = -10 \text{ mA}$
V to 1 V; $I_{s} = -10 \text{ mA}$
V to 1 V; $I_{S} = -10 \text{ mA}$
V to 1 V; $I_{S} = -10 \text{ mA}$
$V, V_{S} = 1 V; V_{D} = 1 V, V_{S} = 2 V;$
ircuit 2
$V, V_{S} = 1 V; V_{D} = 1 V, V_{S} = 2 V;$
ircuit 2
$V_{\rm S} = 2 \text{ V}; \text{ V}_{\rm D} = \text{V}_{\rm S} = 1 \text{ V}; \text{ Test Circuit 3}$
V _{INL} or V _{INH}
VINL OF VINH
5 pF, $R_L = 50 \Omega$;
5 V; Test Circuit 4
5 pF, $R_L = 50 \Omega$;
5 V; Test Circuit 4
5 pF, $R_L = 50 \Omega$;
$V_{S2} = 1.5 \text{ V}; \text{ Test Circuit 5}$
MHz; $R_L = 50 \Omega$, Test Circuit 7
MHz; $R_L = 50 \Omega$, Test Circuit 8
ircuit 6; $R_L = 50 \Omega$
00Ω
nF; Test Circuit 9, $V_S = 0 V$
3.3 V Inputs = 0 V or V _{DD}

NOTES

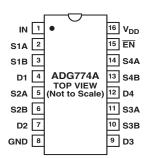
¹Temperature ranges are as follows: B Version, -40° C to $+85^{\circ}$ C. ²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

Table I. Truth Table

EN	IN	D1	D2	D3	D4	Function
1	Х	Hi-Z	Hi-Z	Hi-Z	Hi-Z	DISABLE
0	0	S1A	S2A	S3A	S4A	IN = 0
0	1	S1B	S2B	S3B	S4B	IN = 1

ABSOLUTE MAXIMUM RATINGS¹


$(T_A = 25^{\circ}C \text{ unless otherwise noted})$
V _{DD} to GND
Analog, Digital Inputs ² -0.3 V to V _{DD} + 0.3 V or
Continuous Current, S or D 100 mA
Peak Current, S or D 300 mA
(Pulsed at 1 ms, 10% Duty Cycle max)
Operating Temperature Range
Industrial (B Version) $\dots \dots -40^{\circ}$ C to +85°C
Storage Temperature Range
Junction Temperature 150°C
QSOP Package, Power Dissipation 566 mW
θ_{JA} Thermal Impedance 149.97°C/W
Lead Temperature, Soldering
Vapor Phase (60 sec) $\dots \dots \dots$
Infrared (15 sec) 220°C

NOTES

¹ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

² Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN CONFIGURATION (QSOP)

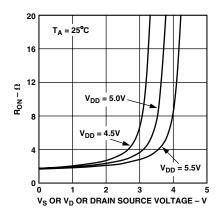
GND	Ground (0 V) Reference.
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
IN	Logic Control Input.
ĒN	Logic Control Input.
R _{ON}	Ohmic resistance between D and S.
$\Delta R_{\rm ON}$	On Resistance match between any two channels
	i.e., $R_{ON} \max - R_{ON} \min$.
R _{FLAT(ON)}	Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
I _S (OFF)	Source Leakage Current with the switch "OFF."
I _D (OFF)	Drain Leakage Current with the switch "OFF."
$I_D, I_S (ON)$	Channel Leakage Current with the switch "ON."
$V_{D}(V_{S})$	Analog Voltage on Terminals D, S.
C _S (OFF)	"OFF" Switch Source Capacitance.
$C_D (OFF)$	"OFF" Switch Drain Capacitance.
$C_D, C_S (ON)$	"ON" Switch Capacitance.
t _{ON}	Delay between applying the digital control input and the output switching on. See Test Circuit 4.
t _{OFF}	Delay between applying the digital control input and the output switching Off.
t _D	"OFF" time or "ON" time measured between the 90% points of both switches, when switching from one address state to another. See Test Circuit 5.
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Bandwidth	Frequency response of the switch in the ON state measured at 3 dB down.
Distortion	$R_{FLAT(ON)}/R_L$

TERMINOLOGY

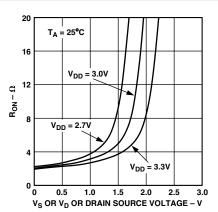
Most Positive Power Supply Potential.

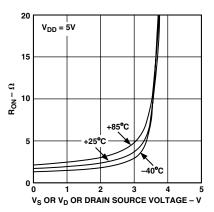
ORDERING GUIDE

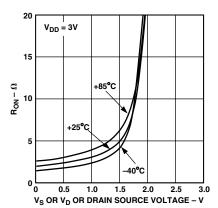
 V_{DD}

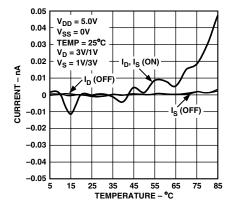

Model	Temperature Range	Package Descriptions	Package Options
ADG774ABRQ	–40°C to +85°C	RQ = 0.15" Shrink Small Outline Package (QSOP)	RQ-16

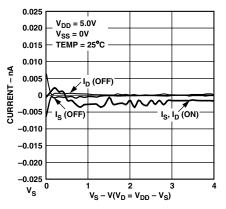
CAUTION_


ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG774A features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

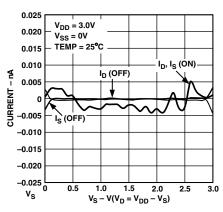

Typical Performance Characteristics-ADG774A

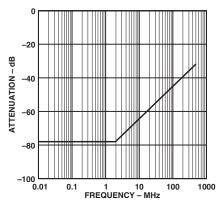

TPC 1. On Resistance as a Function of V_D (V_S) for Various Single Supplies

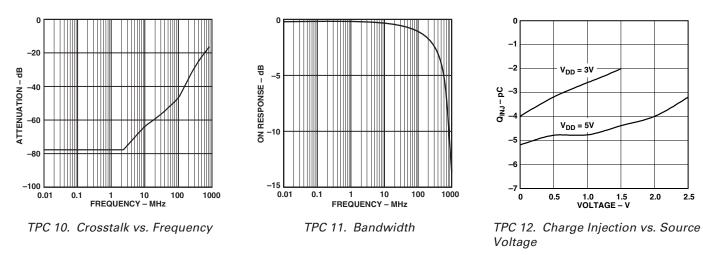

TPC 2. On Resistance as a Function of V_D (V_S) for Various Single Supplies


TPC 3. On Resistance as a Function of V_D (V_S) for Different Temperatures with 5 V Single Supplies


TPC 4. On Resistance as a Function of V_D (V_S) for Different Temperatures with 3 V Single Supplies


TPC 7. Leakage Current as a Function of Temperature


TPC 5. Leakage Current as a Function of V_D (V_S)


TPC 8. Leakage Current as a Function of Temperature

TPC 6. Leakage Current as a Function of V_D (V_S)

TPC 9. Off Isolation vs. Frequency

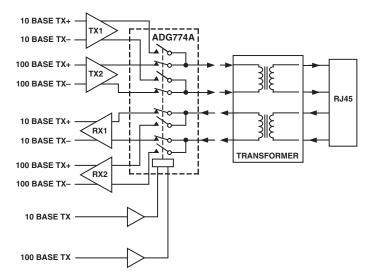
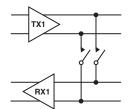
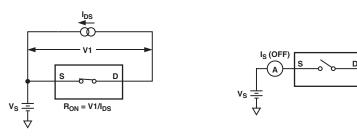


Figure 1. Full Duplex Transceiver





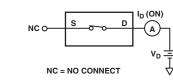
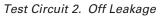
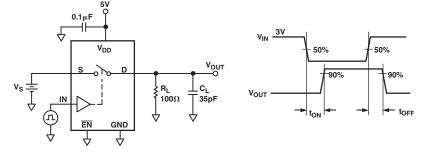

Figure 4. Line Clamp

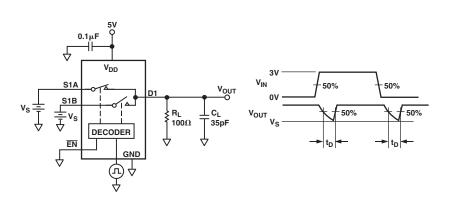
Figure 2. Loop Back


Figure 3. Line Termination

Test Circuits



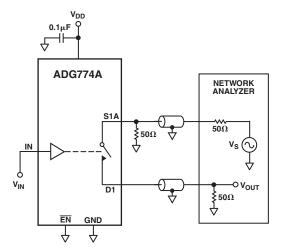
Test Circuit 1. On Resistance



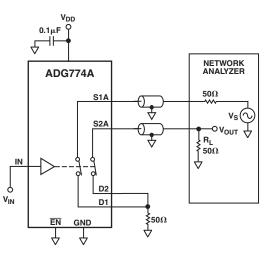
I_D (OFF)

Test Circuit 3. On Leakage

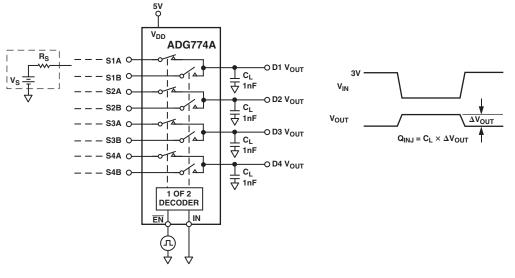
Test Circuit 4. Switching Times

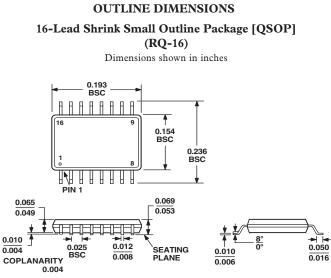


ADG774A NETWORK ANALYZER S1 50Ω ÷ IN o VIN οv_{out} 6) D1 ÷ **ξ**50Ω 4 ĒΝ GND Å Ĥ


Test Circuit 6. Bandwidth

0.1µF


Test Circuit 5. Break-Before-Make Time Delay


Test Circuit 7. Off Isolation

Test Circuit 8. Channel-to-Channel Crosstalk

Test Circuit 9. Charge Injection

Revision History

Location

4/03—Data Sheet changed from REV. 0 to REV. A.	
Changes to TPCs 9-11	5
Updated OUTLINE DIMENSIONS	8

-8-

REV. A

Page