
### FEATURES

- COMPLETE ANALOG INTERFACE
- T1, E1, AND MDSL OPERATION
- CLOCK SCALEABLE SPEED
- SINGLE CHIP SOLUTION
- +5V ONLY (5V OR 3.3V DIGITAL)
- 250mW POWER DISSIPATION
- 48-PIN SSOP
- –40°C TO +85°C OPERATION

### DESCRIPTION

Burr-Brown's Analog Front End greatly reduces the size and cost of an HDSL or MDSL system by providing all of the active analog circuitry needed to connect the Metalink MtH1210B HDSL digital signal processor to an external compromise hybrid and a 1:2.3 HDSL line transformer. All internal filter responses as well as the pulse former output scale with clock frequency—allowing the AFE1105 to operate over a range of bit rates from 196kbps to 1.168Mbps.

Functionally, this unit is separated into a transmit and a receive section. The transmit section generates, filters, and buffers outgoing 2B1Q data. The receive section filters and digitizes the symbol data received on the telephone line and passes it to the MtH1210B. The HDSL Analog Interface is a monolithic device fabricated on  $0.6\mu$ CMOS. It operates on a single +5V supply. It is housed in a 48-pin SSOP package.

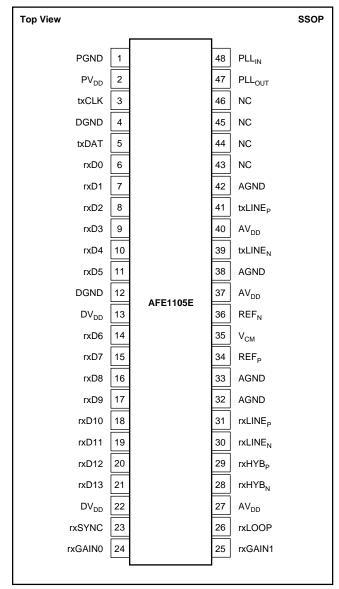


2 S International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111 Internet: http://www.burr-brown.com/ • FAXLine: (800) 548-6133 (US/Canada Only) • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

## **SPECIFICATIONS**

Typical at 25°C,  $AV_{DD}$  = +5V,  $DV_{DD}$  = +3.3V,  $f_{tx}$  = 584kHz (E1 rate), unless otherwise specified.

|                                               |                                        | AFE1105E              |                     |                        |                     |
|-----------------------------------------------|----------------------------------------|-----------------------|---------------------|------------------------|---------------------|
| PARAMETER                                     | COMMENTS                               | MIN                   | ТҮР                 | МАХ                    | UNITS               |
| RECEIVE CHANNEL                               |                                        |                       |                     |                        |                     |
| Number of Inputs                              | Differential                           | 2                     |                     |                        |                     |
| Input Voltage Range                           | Balanced Differential <sup>(1)</sup>   |                       | ±3.0                |                        | V                   |
| Common-Mode Voltage                           | 1.5V CMV Recommended                   |                       | +1.5                |                        | V                   |
| Input Impedance                               | All Inputs                             | See Tv                | pical Performan     | i<br>ice Curves        | •                   |
| Input Capacitance                             | , un inputo                            | 000 19                | 10                  |                        | pF                  |
| Input Gain Matching                           | Line Input vs Hybrid Input             |                       | ±2                  |                        | рі<br>%             |
| Resolution                                    |                                        | 14                    | 12                  |                        | Bits                |
| Programmable Gain                             | Four Gains: 0dB, 3.25dB, 6dB, and 9dB  | 0                     |                     | 9                      | dB                  |
| 5                                             |                                        | 0                     | <u> </u>            | 9                      |                     |
| Settling Time for Gain Change                 |                                        |                       | 6                   |                        | Symbol              |
|                                               |                                        |                       |                     |                        | Periods             |
| Gain + Offset Error                           | Tested at Each Gain Range              |                       | 5                   |                        | %FSR <sup>(2)</sup> |
| Output Data Coding                            |                                        |                       | wo's Compleme       |                        |                     |
| Output Data Rate, rxSYNC <sup>(3)</sup>       |                                        | 98                    |                     | 584(4)                 | kHz                 |
| TRANSMIT CHANNEL                              |                                        |                       |                     |                        |                     |
| Transmit Symbol Rate, f <sub>tx</sub>         |                                        | 98                    |                     | 584 <sup>(4)</sup>     | kHz                 |
|                                               | Dellegre TA NWT 2017 Compliant         | 90                    | 100                 | 304(*)                 |                     |
| T1 Transmit –3dB Point                        | Bellcore TA-NWT-3017 Compliant         | 0 T.                  | 196                 |                        | kHz                 |
| T1 Rate Power Spectral Density <sup>(5)</sup> |                                        | See Ty                | pical Performan     | ice Curves             |                     |
| E1 Transmit –3dB Point                        | ETSI RTR/TM-03036 Compliant            |                       | 292                 |                        | kHz                 |
| E1 Rate Power Spectral Density <sup>(5)</sup> |                                        |                       | pical Performan     |                        |                     |
| Transmit Power <sup>(5)</sup>                 |                                        | 13                    |                     | 14                     | dBm                 |
| Pulse Output                                  |                                        | See Ty                | pical Performan     | ice Curves             |                     |
| Common-Mode Voltage, V <sub>CM</sub>          |                                        |                       | AV <sub>DD</sub> /2 |                        | V                   |
| Output Resistance <sup>(6)</sup>              | DC to 1MHz                             |                       | 1                   |                        | Ω                   |
| TRANSCEIVER PERFORMANCE                       |                                        |                       |                     |                        |                     |
| Uncancelled Echo <sup>(7)</sup>               | ryCAIN OdB Learnhadt Frahlad           |                       |                     | -67                    | dB                  |
|                                               | rxGAIN = 0dB, Loopback Enabled         |                       |                     | •.                     |                     |
|                                               | rxGAIN = 0dB, Loopback Disabled        |                       |                     | -67                    | dB                  |
|                                               | rxGAIN = 3.25dB, Loopback Disabled     |                       |                     | -69                    | dB                  |
|                                               | rxGAIN = 6dB, Loopback Disabled        |                       |                     | -71                    | dB                  |
|                                               | rxGAIN = 9dB, Loopback Disabled        |                       |                     | -73                    | dB                  |
| DIGITAL INTERFACE <sup>(6)</sup>              |                                        |                       |                     |                        |                     |
| Logic Levels                                  |                                        |                       |                     |                        |                     |
| V <sub>IH</sub>                               | I <sub>IH</sub>   < 10μΑ               | DV <sub>DD</sub> –1   |                     | DV <sub>DD</sub> +0.3  | V                   |
| V <sub>IL</sub>                               | $ I_{\parallel}  < 10\mu A$            | -0.3                  |                     | +0.8                   | v                   |
| V <sub>OH</sub>                               | $I_{OH} = -20\mu A$                    | DV <sub>DD</sub> -0.5 |                     |                        | v                   |
| V <sub>OI</sub>                               | $I_{OH} = 20\mu A$                     | DVDD 0.0              |                     | +0.4                   | v                   |
| VoL<br>Transmit/Receive Channel Interface     | $I_{OL} = 20\mu A$                     |                       |                     | +0.4                   | v                   |
|                                               | txCLK Period                           | 1.7                   |                     | 10.2                   |                     |
| t <sub>tx1</sub>                              |                                        |                       |                     |                        | μs                  |
| t <sub>tx2</sub>                              | txCLK Pulse Width                      | t <sub>tx1</sub> /16  |                     | 15t <sub>tx1</sub> /16 | ns                  |
| POWER                                         |                                        |                       |                     |                        |                     |
| Analog Power Supply Voltage                   | Specification                          |                       | 5                   |                        | V                   |
| Analog Power Supply Voltage                   | Operating Range                        | 4.75                  |                     | 5.25                   | V                   |
| Digital Power Supply Voltage                  | Specification                          | -                     | 3.3                 |                        | v                   |
| Digital Power Supply Voltage                  | Operating Range                        | 3.15                  |                     | 5.25                   | v                   |
| Power Dissipation <sup>(4, 8)</sup>           | $DV_{DD} = 3.3V, 1:2$ Line Transformer | 0.10                  | 250                 | 0.20                   | mW                  |
| Power Dissipation <sup>(4, 8)</sup>           |                                        |                       | 300                 |                        | mW                  |
| •                                             | $DV_{DD} = 5V$ , 1:2 Line Transformer  | 60                    | 300                 |                        |                     |
| PSRR                                          |                                        | 60                    |                     |                        | dB                  |
| TEMPERATURE RANGE                             |                                        |                       |                     |                        |                     |
| Operating <sup>(6)</sup>                      |                                        | -40                   |                     | +85                    | °C                  |


NOTES: (1) With a balanced differential signal, the positive input is 180° out of phase with the negative input, therefore the actual voltage swing about the common mode voltage on each pin is  $\pm$ 1.5V to achieve a differential input range of  $\pm$ 3.0V or 6Vp-p. (2) FSR is Full-Scale Range. (3) The output data is available at twice the symbol rate with interpolated values. (4) This specification does not apply to the AFE1105EA. (5) With a pseudo-random equiprobable sequence of HDSL pulses; 13.5dBm applied to the transformer (27dBm output from txLINE<sub>P</sub> and txLINE<sub>N</sub>). (6) Guaranteed by design and characterization. (7) Uncancelled Echo is a measure of the total analog errors in the transmitter and receiver sections including the effect of non-linearity and noise. See the Discussion of Specifications section of this data sheet for more information. (8) Power dissipation includes only the power dissipated within the component and does not include power dissipation. The AFE1105 is tested with a 1:2 line transformer, but will typically be used with a 1:2.3 line transformer, this will slightly increase power dissipation.

#### **PIN DESCRIPTIONS**

| 1GroundPGNDAnalog Ground for PLL2PowerPV <sub>DD</sub> Analog Supply (+5V) for PLL3InputtxCLKSymbol Clock (XMTLE from MtH1210B) (392kHz for T1, 584kHz for E1)4GroundDGNDDigital Ground5InputtxDATXMTDA from MtH1210B6OutputrxD0ADC Output Bit-07OutputrxD1ADC Output Bit-18OutputrxD2ADC Output Bit-19OutputrxD3ADC Output Bit-3 (RCVD1 from MtH1210B)10OutputrxD4ADC Output Bit-4 (RCVD2 from MtH1210B)11OutputrxD5ADC Output Bit-4 (RCVD2 from MtH1210B)12GroundDGNDDigital Ground13PowerDV <sub>DD</sub> Digital Ground14OutputrxD8ADC Output Bit-7 (RCVD5 from MtH1210B)15OutputrxD7ADC Output Bit-7 (RCVD5 from MtH1210B)16OutputrxD8ADC Output Bit-10 (RCVD7 from MtH1210B)18OutputrxD14ADC Output Bit-10 (RCVD6 from MtH1210B)19OutputrxD14ADC Output Bit-10 (RCVD9 from MtH1210B)20OutputrxD13ADC Output Bit-10 (RCVD9 from MtH1210B)21OutputrxD14ADC Output Bit-10 (RCVD9 from MtH1210B)22PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)23InputrxD13ADC Output Bit-11 (RCVD9 from MtH1210B)24InputrxD14ADC Output Bit-13 (RCVD11 from MtH1210B)25 <th></th>           |                                                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|
| 3InputtxCLKSymbol Clock (XMTLE from MtH1210B) (392kHz for T1, 584kHz for E1)4GroundDGNDDigital Ground5InputtxDATXMTDA from MtH1210B6OutputrxD0ADC Output Bit-07OutputrxD1ADC Output Bit-18OutputrxD3ADC Output Bit-3 (RCVD1 from MtH1210B)9OutputrxD3ADC Output Bit-4 (RCVD2 from MtH1210B)10OutputrxD5ADC Output Bit-3 (RCVD3 from MtH1210B)11OutputrxD5ADC Output Bit-4 (RCVD2 from MtH1210B)12GroundDGNDDigital Ground13PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)14OutputrxD6ADC Output Bit-6 (RCVD4 from MtH1210B)15OutputrxD7ADC Output Bit-6 (RCVD6 from MtH1210B)16OutputrxD9ADC Output Bit-10 (RCVD5 from MtH1210B)17OutputrxD10ADC Output Bit-10 (RCVD8 from MtH1210B)18OutputrxD11ADC Output Bit-10 (RCVD8 from MtH1210B)19OutputrxD11ADC Output Bit-11 (RCVD9 from MtH1210B)20OutputrxD13ADC Output Bit-13 (RCVD10 from MtH1210B)21OutputrxD13ADC Output Bit-13 (RCVD10 from MtH1210B)22PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)23InputrxD13ADC Output Bit-11 (RCVG0 from MtH1210B)24InputrxD4ADC Output Bit-13 (RCVCK from MtH1210B)25InputrxGAIN0< |                                                                  |  |
| 4GroundDGNDDigital Ground5InputtxDATXMTDA from MtH1210B6OutputrxD0ADC Output Bit-07OutputrxD1ADC Output Bit-18OutputrxD2ADC Output Bit-2 (RCVD0 from MtH1210B)9OutputrxD3ADC Output Bit-3 (RCVD1 from MtH1210B)10OutputrxD5ADC Output Bit-4 (RCVD2 from MtH1210B)11OutputrxD5ADC Output Bit-4 (RCVD2 from MtH1210B)12GroundDGNDDigital Ground13PowerDV <sub>DD</sub> Digital Ground14OutputrxD6ADC Output Bit-6 (RCVD4 from MtH1210B)15OutputrxD7ADC Output Bit-7 (RCVD5 from MtH1210B)16OutputrxD8ADC Output Bit-7 (RCVD5 from MtH1210B)17OutputrxD9ADC Output Bit-8 (RCVD6 from MtH1210B)18OutputrxD10ADC Output Bit-9 (RCVD7 from MtH1210B)19OutputrxD11ADC Output Bit-10 (RCVD8 from MtH1210B)20OutputrxD11ADC Output Bit-13 (RCVD1 from MtH1210B)21OutputrxD13ADC Output Bit-13 (RCVD11 from MtH1210B)22PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)23InputrxSYNCADC Output Bit-13 (RCVCK from MtH1210B)24InputrxD13ADC Output Bit-13 (RCVD11 from MtH1210B)25InputrxGAIN0Receive Gain Control Bit-025InputrxGAIN1Receive Gain Control Bit-1 (RCVG0 from MtH121          |                                                                  |  |
| 5InputttDATXMTDA from MtH1210B6OutputrxD0ADC Output Bit-07OutputrxD1ADC Output Bit-08OutputrxD2ADC Output Bit-2 (RCVD0 from MtH1210B)9OutputrxD3ADC Output Bit-3 (RCVD1 from MtH1210B)10OutputrxD4ADC Output Bit-4 (RCVD2 from MtH1210B)11OutputrxD5ADC Output Bit-4 (RCVD3 from MtH1210B)12GroundDGNDDigital Ground13PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)14OutputrxD8ADC Output Bit-7 (RCVD5 from MtH1210B)15OutputrxD7ADC Output Bit-7 (RCVD5 from MtH1210B)16OutputrxD8ADC Output Bit-9 (RCVD7 from MtH1210B)17OutputrxD1ADC Output Bit-9 (RCVD7 from MtH1210B)18OutputrxD1ADC Output Bit-10 (RCVD8 from MtH1210B)19OutputrxD11ADC Output Bit-11 (RCVD9 from MtH1210B)20OutputrxD12ADC Output Bit-12 (RCVD10 from MtH1210B)21OutputrxD13ADC Output Bit-13 (RCVD11 from MtH1210B)22PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)23InputrxSYNCADC Sync Signal (RCVCK from MtH1210B)24InputrxGAIN0Receive Gain Control Bit-025InputrxGAIN1Receive Gain Control Bit-026InputrxGAIN1Receive Gain Control Bit-027PowerAV <sub>DD</sub> Analog Supply (+5V)         |                                                                  |  |
| 6OutputrxD0ADC Output Bit-07OutputrxD1ADC Output Bit-18OutputrxD2ADC Output Bit-2 (RCVD0 from MtH1210B)9OutputrxD3ADC Output Bit-3 (RCVD1 from MtH1210B)10OutputrxD4ADC Output Bit-3 (RCVD2 from MtH1210B)11OutputrxD5ADC Output Bit-4 (RCVD2 from MtH1210B)12GroundDGNDDigital Ground13PowerDV_DDDigital Supply (+3.3V to +5V)14OutputrxD6ADC Output Bit-6 (RCVD4 from MtH1210B)15OutputrxD7ADC Output Bit-7 (RCVD5 from MtH1210B)16OutputrxD8ADC Output Bit-9 (RCVD7 from MtH1210B)17OutputrxD9ADC Output Bit-9 (RCVD7 from MtH1210B)18OutputrxD11ADC Output Bit-10 (RCVD8 from MtH1210B)20OutputrxD11ADC Output Bit-11 (RCVD9 from MtH1210B)21OutputrxD12ADC Output Bit-13 (RCVD11 from MtH1210B)22PowerDV_DDDigital Supply (+3.3V to +5V)23InputrxSYNCADC Sync Signal (RCVCK from MtH1210B)24InputrxGAIN0Receive Gain Control Bit-025InputrxGAIN1Receive Gain Control Bit-026InputrxGAIN1Receive Gain Control Bit-027PowerAV <sub>DD</sub> Analog Supply (+5V)                                                                                                                   |                                                                  |  |
| 7OutputrxD1ADC Output Bit-18OutputrxD2ADC Output Bit-2 (RCVD0 from MtH1210B)9OutputrxD3ADC Output Bit-3 (RCVD1 from MtH1210B)10OutputrxD4ADC Output Bit-3 (RCVD2 from MtH1210B)11OutputrxD5ADC Output Bit-4 (RCVD2 from MtH1210B)12GroundDGNDDigital Ground13PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)14OutputrxD6ADC Output Bit-6 (RCVD4 from MtH1210B)15OutputrxD7ADC Output Bit-7 (RCVD5 from MtH1210B)16OutputrxD9ADC Output Bit-7 (RCVD5 from MtH1210B)17OutputrxD9ADC Output Bit-9 (RCVD7 from MtH1210B)18OutputrxD10ADC Output Bit-10 (RCVD8 from MtH1210B)20OutputrxD11ADC Output Bit-11 (RCVD9 from MtH1210B)21OutputrxD13ADC Output Bit-11 (RCVD9 from MtH1210B)22PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)23InputrxD13ADC Output Bit-11 (RCVD9 from MtH1210B)24InputrxGAIN0Receive Gain Control Bit-025InputrxGAIN1Receive Gain Control Bit-026InputrxGAIN1Receive Gain Control Bit-027PowerAV <sub>DD</sub> Analog Supply (+5V)                                                                                                                      |                                                                  |  |
| 8OutputrxD2ADC Output Bit-2 (RCVD0 from MtH1210B)9OutputrxD3ADC Output Bit-3 (RCVD1 from MtH1210B)10OutputrxD4ADC Output Bit-3 (RCVD2 from MtH1210B)11OutputrxD5ADC Output Bit-5 (RCVD3 from MtH1210B)12GroundDGNDDigital Ground13PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)14OutputrxD6ADC Output Bit-6 (RCVD4 from MtH1210B)15OutputrxD7ADC Output Bit-7 (RCVD5 from MtH1210B)16OutputrxD8ADC Output Bit-9 (RCVD7 from MtH1210B)17OutputrxD9ADC Output Bit-9 (RCVD7 from MtH1210B)18OutputrxD10ADC Output Bit-9 (RCVD7 from MtH1210B)20OutputrxD11ADC Output Bit-10 (RCVD8 from MtH1210B)21OutputrxD13ADC Output Bit-12 (RCVD10 from MtH1210B)22PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)23InputrxSYNCADC Output Bit-13 (RCVCK from MtH1210B)24InputrxGAIN0Receive Gain Control Bit-025InputrxGAIN0Receive Gain Control Bit-025InputrxGAIN0Receive Gain Control Bit-026InputrxLOOPLoopback Control Signal (loopback is enabled by positive signal)27PowerAV <sub>DD</sub> Analog Supply (+5V)                                                                   |                                                                  |  |
| 9OutputrxD3ADC Output Bit-3 (RCVD1 from MtH1210B)10OutputrxD4ADC Output Bit-4 (RCVD2 from MtH1210B)11OutputrxD5ADC Output Bit-5 (RCVD3 from MtH1210B)12GroundDGNDDigital Ground13PowerDV <sub>DD</sub> Digital Ground14OutputrxD6ADC Output Bit-6 (RCVD4 from MtH1210B)15OutputrxD7ADC Output Bit-6 (RCVD4 from MtH1210B)16OutputrxD7ADC Output Bit-7 (RCVD5 from MtH1210B)17OutputrxD9ADC Output Bit-8 (RCVD6 from MtH1210B)18OutputrxD10ADC Output Bit-9 (RCVD7 from MtH1210B)19OutputrxD11ADC Output Bit-10 (RCVD8 from MtH1210B)20OutputrxD12ADC Output Bit-11 (RCVD9 from MtH1210B)21OutputrxD13ADC Output Bit-13 (RCVD11 from MtH1210B)22PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)23InputrxSYNCADC Output Bit-13 (RCVCK from MtH1210B)24InputrxGAIN1Receive Gain Control Bit-025InputrxGAIN1Receive Gain Control Bit-1 (RCVG0 from MtH1210B)26InputrxGAIN1Receive Gain Control Bit-1 (RCVG0 from MtH1210B)27PowerAV <sub>DD</sub> Analog Supply (+5V)                                                                                                                |                                                                  |  |
| 10OutputrxD4ADC Output Bit-4 (RCVD2 from MtH1210B)11OutputrxD5ADC Output Bit-5 (RCVD3 from MtH1210B)12GroundDGNDDigital Ground13PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)14OutputrxD6ADC Output Bit-6 (RCVD4 from MtH1210B)15OutputrxD7ADC Output Bit-6 (RCVD4 from MtH1210B)16OutputrxD8ADC Output Bit-7 (RCVD5 from MtH1210B)17OutputrxD9ADC Output Bit-9 (RCVD7 from MtH1210B)18OutputrxD10ADC Output Bit-9 (RCVD7 from MtH1210B)19OutputrxD11ADC Output Bit-10 (RCVD8 from MtH1210B)20OutputrxD12ADC Output Bit-11 (RCVD9 from MtH1210B)21OutputrxD13ADC Output Bit-13 (RCVD11 from MtH1210B)22PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)23InputrxSYNCADC Sync Signal (RCVCK from MtH1210B) (392kHz for T1, 584kHz for E1)24InputrxGAIN0Receive Gain Control Bit-025InputrxGAIN1Receive Gain Control Bit-126InputrxLOOPLoopback Control Signal (loopback is enabled by positive signal)27PowerAV <sub>DD</sub> Analog Supply (+5V)                                                                                                                            |                                                                  |  |
| 11OutputrxD5ADC Output Bit-5 (RCVD3 from MtH1210B)12GroundDGNDDigital Ground13PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)14OutputrxD6ADC Output Bit-6 (RCVD4 from MtH1210B)15OutputrxD7ADC Output Bit-7 (RCVD5 from MtH1210B)16OutputrxD8ADC Output Bit-7 (RCVD5 from MtH1210B)17OutputrxD9ADC Output Bit-9 (RCVD7 from MtH1210B)18OutputrxD10ADC Output Bit-9 (RCVD7 from MtH1210B)19OutputrxD11ADC Output Bit-10 (RCVD8 from MtH1210B)20OutputrxD12ADC Output Bit-11 (RCVD9 from MtH1210B)21OutputrxD13ADC Output Bit-13 (RCVD11 from MtH1210B)22PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)23InputrxSYNCADC Sync Signal (RCVCK from MtH1210B) (392kHz for T1, 584kHz for E1)24InputrxGAIN0Receive Gain Control Bit-025InputrxGAIN1Receive Gain Control Bit-1 (RCVG0 from MtH1210B)26InputrxLOOPLoopback Control Signal (loopback is enabled by positive signal)27PowerAV <sub>DD</sub> Analog Supply (+5V)                                                                                                                                                        |                                                                  |  |
| 12GroundDGNDDigital Ground13PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)14OutputrxD6ADC Output Bit-6 (RCVD4 from MtH1210B)15OutputrxD7ADC Output Bit-7 (RCVD5 from MtH1210B)16OutputrxD8ADC Output Bit-8 (RCVD6 from MtH1210B)17OutputrxD9ADC Output Bit-9 (RCVD7 from MtH1210B)18OutputrxD10ADC Output Bit-10 (RCVD8 from MtH1210B)19OutputrxD11ADC Output Bit-10 (RCVD9 from MtH1210B)20OutputrxD12ADC Output Bit-12 (RCVD10 from MtH1210B)21OutputrxD13ADC Output Bit-13 (RCVD11 from MtH1210B)22PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)23InputrxSYNCADC Signal (RCVCK from MtH1210B) (392kHz for T1, 584kHz for E1)24InputrxGAIN0Receive Gain Control Bit-025InputrxGAIN1Receive Gain Control Bit-126InputrxLOOPLoopback Control Signal (loopback is enabled by positive signal)27PowerAV <sub>DD</sub> Analog Supply (+5V)                                                                                                                                                                                                                                   |                                                                  |  |
| 13PowerDV_DDDigital Supply (+3.3V to +5V)14OutputrxD6ADC Output Bit-6 (RCVD4 from MtH1210B)15OutputrxD7ADC Output Bit-7 (RCVD5 from MtH1210B)16OutputrxD8ADC Output Bit-8 (RCVD6 from MtH1210B)17OutputrxD9ADC Output Bit-9 (RCVD7 from MtH1210B)18OutputrxD10ADC Output Bit-9 (RCVD7 from MtH1210B)19OutputrxD11ADC Output Bit-10 (RCVD8 from MtH1210B)20OutputrxD12ADC Output Bit-12 (RCVD10 from MtH1210B)21OutputrxD12ADC Output Bit-13 (RCVD11 from MtH1210B)22PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)23InputrxSYNCADC Sync Signal (RCVCK from MtH1210B) (392kHz for T1, 584kHz for E1)24InputrxGAIN0Receive Gain Control Bit-025InputrxGAIN1Receive Gain Control Bit-1 (RCVG0 from MtH1210B)26InputrxLOOPLoopback Control Signal (loopback is enabled by positive signal)27PowerAV <sub>DD</sub> Analog Supply (+5V)                                                                                                                                                                                                                                               |                                                                  |  |
| 14OutputrxD6ADC Output Bit-6 (RCVD4 from MtH1210B)15OutputrxD7ADC Output Bit-7 (RCVD5 from MtH1210B)16OutputrxD8ADC Output Bit-8 (RCVD6 from MtH1210B)17OutputrxD9ADC Output Bit-9 (RCVD7 from MtH1210B)18OutputrxD10ADC Output Bit-10 (RCVD8 from MtH1210B)19OutputrxD11ADC Output Bit-10 (RCVD9 from MtH1210B)20OutputrxD12ADC Output Bit-12 (RCVD10 from MtH1210B)21OutputrxD13ADC Output Bit-13 (RCVD11 from MtH1210B)22PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)23InputrxSYNCADC Sync Signal (RCVCK from MtH1210B) (392kHz for T1, 584kHz for E1)24InputrxGAIN0Receive Gain Control Bit-025InputrxGAIN1Receive Gain Control Bit-1 (RCVG0 from MtH1210B)26InputrxLOOPLoopback Control Signal (loopback is enabled by positive signal)27PowerAV <sub>DD</sub> Analog Supply (+5V)                                                                                                                                                                                                                                                                                       |                                                                  |  |
| 15OutputrxD7ADC Output Bit-7 (RCVD5 from MtH1210B)16OutputrxD8ADC Output Bit-8 (RCVD6 from MtH1210B)17OutputrxD9ADC Output Bit-9 (RCVD7 from MtH1210B)18OutputrxD10ADC Output Bit-10 (RCVD8 from MtH1210B)19OutputrxD11ADC Output Bit-11 (RCVD9 from MtH1210B)20OutputrxD12ADC Output Bit-12 (RCVD10 from MtH1210B)21OutputrxD13ADC Output Bit-13 (RCVD11 from MtH1210B)22PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)23InputrxSYNCADC Sync Signal (RCVCK from MtH1210B) (392kHz for T1, 584kHz for E1)24InputrxGAIN0Receive Gain Control Bit-025InputrxGAIN1Receive Gain Control Bit-1 (RCVG0 from MtH1210B)26InputrxLOOPLoopback Control Signal (loopback is enabled by positive signal)27PowerAV <sub>DD</sub> Analog Supply (+5V)                                                                                                                                                                                                                                                                                                                                         |                                                                  |  |
| 16OutputrxD8ADC Output Bit-8 (RCVD6 from MtH1210B)17OutputrxD9ADC Output Bit-9 (RCVD7 from MtH1210B)18OutputrxD10ADC Output Bit-10 (RCVD8 from MtH1210B)19OutputrxD11ADC Output Bit-11 (RCVD9 from MtH1210B)20OutputrxD12ADC Output Bit-12 (RCVD10 from MtH1210B)21OutputrxD13ADC Output Bit-13 (RCVD11 from MtH1210B)22PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)23InputrxSYNCADC Sync Signal (RCVCK from MtH1210B) (392kHz for T1, 584kHz for E1)24InputrxGAIN0Receive Gain Control Bit-025InputrxGAIN1Receive Gain Control Bit-1 (RCVG0 from MtH1210B)26InputrxLOOPLoopback Control Signal (loopback is enabled by positive signal)27PowerAV <sub>DD</sub> Analog Supply (+5V)                                                                                                                                                                                                                                                                                                                                                                                           |                                                                  |  |
| 17OutputrxD9ADC Output Bit-9 (RCVD7 from MtH1210B)18OutputrxD10ADC Output Bit-10 (RCVD8 from MtH1210B)19OutputrxD11ADC Output Bit-11 (RCVD9 from MtH1210B)20OutputrxD12ADC Output Bit-12 (RCVD10 from MtH1210B)21OutputrxD13ADC Output Bit-13 (RCVD11 from MtH1210B)22PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)23InputrxSYNCADC Sync Signal (RCVCK from MtH1210B) (392kHz for T1, 584kHz for E1)24InputrxGAIN0Receive Gain Control Bit-025InputrxGAIN1Receive Gain Control Bit-1 (RCVG0 from MtH1210B)26InputrxLOOPLoopback Control Signal (loopback is enabled by positive signal)27PowerAV <sub>DD</sub> Analog Supply (+5V)                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                  |  |
| 18OutputrxD10ADC Output Bit-10 (RCVD8 from MtH1210B)19OutputrxD11ADC Output Bit-11 (RCVD9 from MtH1210B)20OutputrxD12ADC Output Bit-12 (RCVD10 from MtH1210B)21OutputrxD13ADC Output Bit-13 (RCVD11 from MtH1210B)22PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)23InputrxSYNCADC Sync Signal (RCVCK from MtH1210B) (392kHz for T1, 584kHz for E1)24InputrxGAIN0Receive Gain Control Bit-025InputrxGAIN1Receive Gain Control Bit-1 (RCVG0 from MtH1210B)26InputrxLOOPLoopback Control Signal (loopback is enabled by positive signal)27PowerAV <sub>DD</sub> Analog Supply (+5V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  |  |
| 19OutputrxD11ADC Output Bit-11 (RCVD9 from MtH1210B)20OutputrxD12ADC Output Bit-12 (RCVD10 from MtH1210B)21OutputrxD13ADC Output Bit-13 (RCVD11 from MtH1210B)22PowerDV_DDDigital Supply (+3.3V to +5V)23InputrxSYNCADC Sync Signal (RCVCK from MtH1210B) (392kHz for T1, 584kHz for E1)24InputrxGAIN0Receive Gain Control Bit-025InputrxGAIN1Receive Gain Control Bit-1 (RCVG0 from MtH1210B)26InputrxLOOPLoopback Control Signal (loopback is enabled by positive signal)27PowerAV <sub>DD</sub> Analog Supply (+5V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  |  |
| 20OutputrxD12ADC Output Bit-12 (RCVD10 from MtH1210B)21OutputrxD13ADC Output Bit-13 (RCVD11 from MtH1210B)22PowerDV <sub>DD</sub> Digital Supply (+3.3V to +5V)23InputrxSYNCADC Sync Signal (RCVCK from MtH1210B) (392kHz for T1, 584kHz for E1)24InputrxGAIN0Receive Gain Control Bit-025InputrxGAIN1Receive Gain Control Bit-1 (RCVG0 from MtH1210B)26InputrxLOOPLoopback Control Signal (loopback is enabled by positive signal)27PowerAV <sub>DD</sub> Analog Supply (+5V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ADC Output Bit-10 (RCVD8 from MtH1210B)                          |  |
| 21OutputrxD13ADC Output Bit-13 (RCVD11 from MtH1210B)22PowerDV_DDDigital Supply (+3.3V to +5V)23InputrxSYNCADC Sync Signal (RCVCK from MtH1210B) (392kHz for T1, 584kHz for E1)24InputrxGAIN0Receive Gain Control Bit-025InputrxGAIN1Receive Gain Control Bit-1 (RCVG0 from MtH1210B)26InputrxLOOPLoopback Control Signal (loopback is enabled by positive signal)27PowerAV <sub>DD</sub> Analog Supply (+5V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |  |
| 22PowerDV_DDDigital Supply (+3.3V to +5V)23InputrxSYNCADC Sync Signal (RCVCK from MtH1210B) (392kHz for T1, 584kHz for E1)24InputrxGAIN0Receive Gain Control Bit-025InputrxGAIN1Receive Gain Control Bit-1 (RCVG0 from MtH1210B)26InputrxLOOPLoopback Control Signal (loopback is enabled by positive signal)27PowerAV <sub>DD</sub> Analog Supply (+5V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                  |  |
| 23InputrxSYNCADC Sync Signal (RCVCK from MtH1210B) (392kHz for T1, 584kHz for E1)24InputrxGAIN0Receive Gain Control Bit-025InputrxGAIN1Receive Gain Control Bit-1 (RCVG0 from MtH1210B)26InputrxLOOPLoopback Control Signal (loopback is enabled by positive signal)27PowerAV <sub>DD</sub> Analog Supply (+5V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |  |
| 24     Input     rxGAIN0     Receive Gain Control Bit-0       25     Input     rxGAIN1     Receive Gain Control Bit-1 (RCVG0 from MtH1210B)       26     Input     rxLOOP     Loopback Control Signal (loopback is enabled by positive signal)       27     Power     AV <sub>DD</sub> Analog Supply (+5V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                  |  |
| 25     Input     rxGAIN1     Receive Gain Control Bit-1 (RCVG0 from MtH1210B)       26     Input     rxLOOP     Loopback Control Signal (loopback is enabled by positive signal)       27     Power     AV <sub>DD</sub> Analog Supply (+5V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  |  |
| 26     Input     rxLOOP     Loopback Control Signal (loopback is enabled by positive signal)       27     Power     AV <sub>DD</sub> Analog Supply (+5V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                  |  |
| 27 Power AV <sub>DD</sub> Analog Supply (+5V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Loopback Control Signal (loopback is enabled by positive signal) |  |
| 28 Input rxHYB <sub>N</sub> Negative Input from Hybrid Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Positive Input from Hybrid Network                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Negative Line Input                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Positive Line Input                                              |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analog Ground                                                    |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analog Ground                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Positive Reference Output, Nominally 3.5V                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Common-Mode Voltage (buffered), Nominally 2.5V                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Negative Reference Output, Nominally 1.5V                        |  |
| 37 Power AV <sub>DD</sub> Analog Supply (+5V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analog Ground                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Transmit Line Output Negative                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analog Supply (+5V)                                              |  |
| 41 Output txLINE <sub>P</sub> Transmit Line Output Positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |  |
| 42 Ground AGND Analog Ground                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  |  |
| 43 NC NC Connection to Ground Recommended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |  |
| 44 NC NC Connection to Ground Recommended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |  |
| 45 NC NC Connection to Ground Recommended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |  |
| 46 NC NC Connection to Ground Recommended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |  |
| 47 Output PLL <sub>OUT</sub> PLL Filter Output   48 Input PLL <sub>IN</sub> PLL Filter Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  |  |
| 48 Input PLL <sub>IN</sub> PLL Filter Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |  |

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

#### **PIN CONFIGURATION**



### PACKAGE/ORDERING INFORMATION

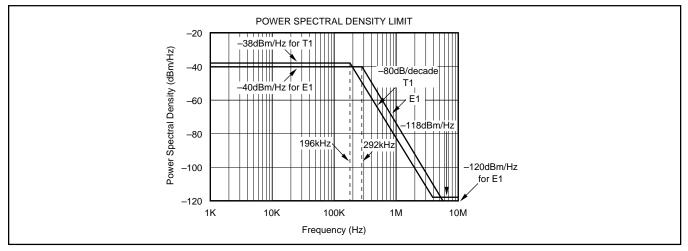
| PRODUCT   | MAXIMUM<br>BIT<br>RATE | PACKAGE             | PACKAGE<br>DRAWING<br>NUMBER <sup>(1)</sup> | TEMPERATURE<br>RANGE |
|-----------|------------------------|---------------------|---------------------------------------------|----------------------|
| AFE1105E  | 1.168Mbps              | 48-Pin Plastic SSOP | 333                                         | -40°C to +85°C       |
| AFE1105EA | 512kbps                | 48-Pin Plastic SSOP | 333                                         | -40°C to +85°C       |

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

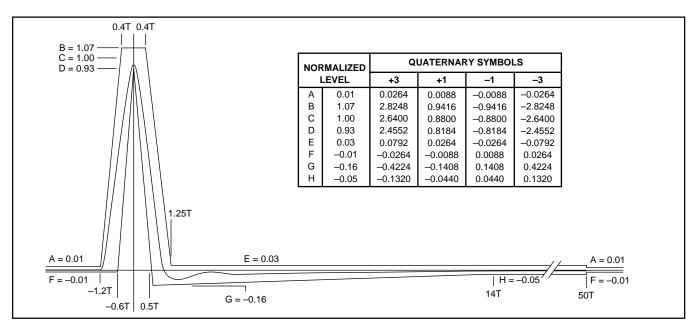
### **ABSOLUTE MAXIMUM RATINGS**

| Analog Inputs: Current                                                        |
|-------------------------------------------------------------------------------|
| Voltage AGND -0.3V to AV <sub>DD</sub> +0.3V                                  |
| Analog Outputs Short Circuit to Ground (+25°C) Continuous                     |
| AV <sub>DD</sub> to AGND0.3V to 6V                                            |
| PV <sub>DD</sub> to PGND0.3V to 6V                                            |
| DV <sub>DD</sub> to DGND0.3V to 6V                                            |
| PLL <sub>IN</sub> or PLL <sub>OUT</sub> to PGND0.3V to PV <sub>DD</sub> +0.3V |
| Digital Input Voltage to DGND0.3V to DV <sub>DD</sub> +0.3V                   |
| Digital Output Voltage to DGND0.3V to DV <sub>DD</sub> +0.3V                  |
| AGND, DGND, PGND Differential Voltage0.3V                                     |
| Junction Temperature (T <sub>J</sub> ) +150°C                                 |
| Storage Temperature Range40°C to +125°C                                       |
| Lead Temperature (soldering, 3s) +260°C                                       |
| Power Dissipation 700mW                                                       |

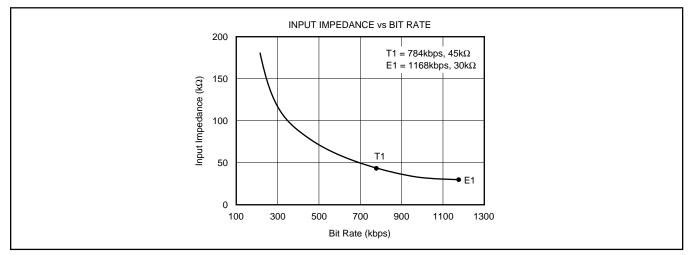



This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.


# **TYPICAL PERFORMANCE CURVES**

### At Output of Pulse Transformer


Typical at 25°C, AV<sub>DD</sub> = +5V, DV<sub>DD</sub> = +3.3V, unless otherwise specified.



CURVE 1. Upper Bound of Power Spectral Density Measured at the Transformer Output.







CURVE 3. Input Impedance of rxLINE and rxHYB.

## THEORY OF OPERATION

The transmit channel consists of a switched-capacitor pulse forming network followed by a differential line driver. The pulse forming network receives symbol data from the XMTDA output of the MtH1210B and generates a 2B1Q output waveform. The output meets the pulse mask and power spectral density requirements defined in European Telecommunications Standards Institute document RTR/ TM-03036 for E1 mode and in sections 6.2.1 and 6.2.2.1 of Bellcore technical advisory TA-NWT-001210 for T1 mode. The differential line driver uses a composite output stage combining class B operation (for high efficiency driving large signals) with class AB operation (to minimize crossover distortion).

The receive channel is designed around a fourth-order delta sigma A/D converter. It includes a difference amplifier designed to be used with an external compromise hybrid for first order analog crosstalk reduction. A programmable gain amplifier with gains of 0dB to +9dB is also included. The delta sigma modulator operating at a 24X oversampling ratio produces 14 bits of resolution at output rates up to 584kHz. The basic functionality of the AFE1105 is illustrated in Figure 1 shown below.

The receive channel operates by summing the two differential inputs, one from the line (rxLINE) and the other from the compromise hybrid (rxHYB). The connection of these two inputs so that the hybrid signal is subtracted from the line signal is described in the paragraph titled "Echo Cancellation in the AFE". The equivalent gain for each input in the difference amp is 1. The resulting signal then passes to a programmable gain amplifier which can be set for gains of 0dB through 9dB. The ADC converts the signal to a 14-bit digital word, rxD13-rxD0.

### rxLOOP INPUT

rxLOOP is the loopback control signal. When enabled, the rxLINE<sub>P</sub> and rxLINE<sub>N</sub> inputs are disconnected from the AFE. The rxHYB<sub>P</sub> and rxHYB<sub>N</sub> inputs remain connected. Loopback is enabled by applying a positive signal (Logic 1) to rxLOOP.

### ECHO CANCELLATION IN THE AFE

The rxHYB input is designed to be subtracted from the rxLINE input for first order echo cancellation. To accomplish this, note that the rxLINE input is connected to the same polarity signal at the transformer (positive to positive and negative to negative) while the rxHYB input is connected to opposite polarity through the compromise hybrid (negative to positive and positive to negative) as shown in Figure 2.

### **RECEIVE DATA CODING**

The data from the receive channel A/D converter is coded in two's complement code.

| ANALOG INPUT        | OUTPUT CODE (rxD13 - rxD0) |
|---------------------|----------------------------|
| Positive Full Scale | 011111111111               |
| Mid Scale           | 000000000000               |
| Negative Full Scale | 100000000000               |

### RECEIVE CHANNEL PROGRAMMABLE GAIN AMPLIFIER

The gain of the amplifier at the input of the Receive Channel is set by two gain control pins, rxGAIN1 and rxGAIN0. The resulting gain between 0dB and +9dB is shown below.

| rxGAIN1 | rxGAIN0 | GAIN   |
|---------|---------|--------|
| 0       | 0       | 0dB    |
| 0       | 1       | 3.25dB |
| 1       | 0       | 6dB    |
| 1       | 1       | 9dB    |

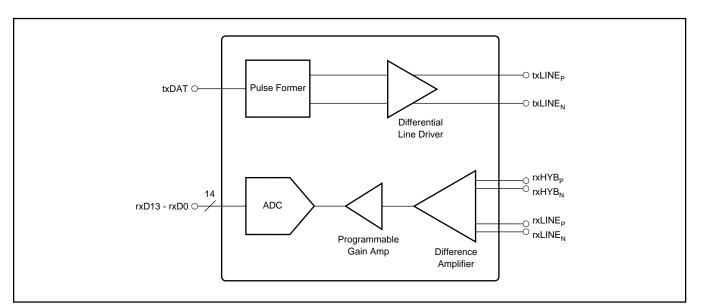



FIGURE 1. Functional Block Diagram of AFE1105.

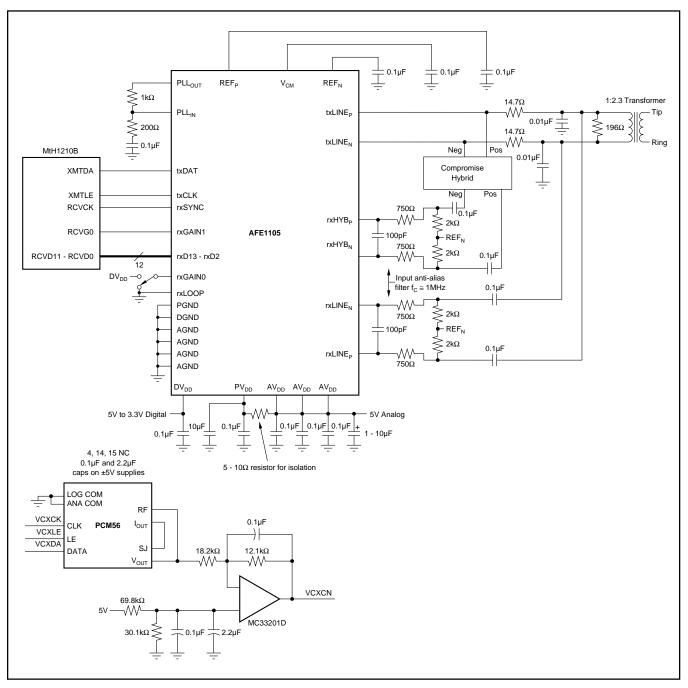



FIGURE 2. Basic Connection Diagram.

#### rxHYBAND rxLINE INPUT ANTI-ALIASING FILTERS

The –3dB frequency of the input anti-aliasing filter for the rxLINE and rxHYB differential inputs should be about 1MHz. Suggested values for the filter are  $750\Omega$  for each of the two input resistors and 100pF for the capacitor. Together the two  $750\Omega$  resistors and the 100pF capacitor result in –3dB frequency of just over 1MHz. The  $750\Omega$  input resistors will result in a minimal voltage divider loss with the input impedance of the AFE1105.

This circuit applies at both T1 and E1 rates. For slower rates, the antialiasing filters will give best performance with their -3dB frequency approximately equal to the bit rate. For example, a -3dB frequency of 500kHz should be used for a single pair bit rate of 500kbps.

#### **rxHYB AND rxLINE INPUT BIAS VOLTAGE**

The transmitter output on the txLINE pins is centered at midscale, 2.5V. But, the rxLINE input signal is centered at 1.5V in the circuit shown in Figure 2 above.

Inside the AFE1105, the rxHYB and rxLINE signals are subtracted as described in the paragraph on echo cancellation above. This means that the rxHYB inputs need to be centered at 1.5V just as the rxLINE signal is centered at 1.5V. REF<sub>N</sub> (Pin 36) is a 1.5V voltage source. The external compromise hybrid must be designed so that the signal into the rxHYB inputs is centered at 1.5V.

#### TIMING DIAGRAM

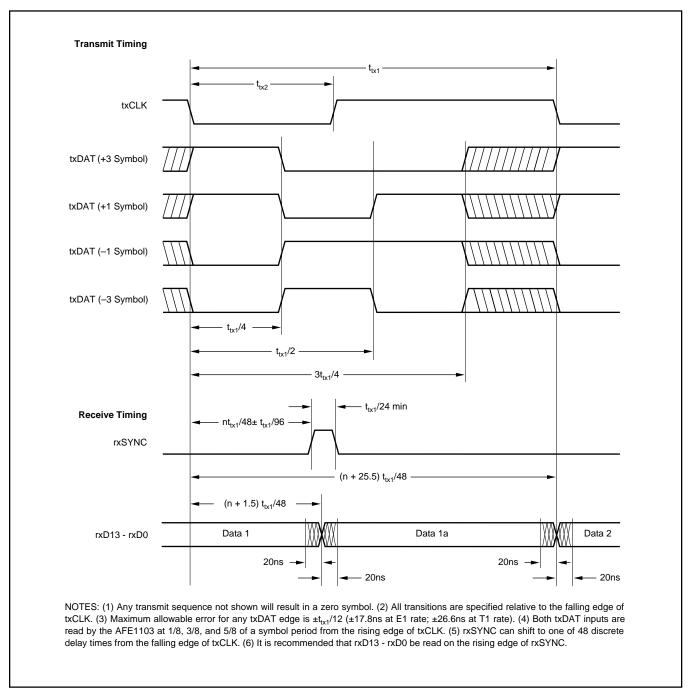



FIGURE 3. Timing Diagram.

### **RECEIVE TIMING**

The rxSYNC signal controls portions of the A/D converter's decimation filter and the data output timing of the A/D converter. It is generated at the symbol rate by the user and must be synchronized with txCLK. The rising edge of rxSYNC can occur at the falling edge of txCLK or it can be shifted by the user in increments of 1/48 of a symbol period to one of 47 discrete delay times after the falling edge of txCLK.

The bandwidth of the A/D converter decimation filter is equal to one half of the symbol rate. The A/D converter data output rate is 2X the symbol rate. The specifications of the AFE1105 assume that one A/D converter output is used per symbol period and the other interpolated output is ignored. The Receive Timing Diagram above suggests using the rxSYNC pulse to read the first data output in a symbol period. Either data output may be used. Both data outputs may be used for more flexible post-processing.

### DISCUSSION OF SPECIFICATIONS

### UNCANCELLED ECHO

The key measure of transceiver performance is uncancelled echo. This measurement is made as shown in the diagram of Figure 4. The AFE is connected to an output circuit including a typical 1:2 line transformer. The line is simulated by a  $135\Omega$  resistor. Symbol sequences are generated by the tester and applied both to the AFE and to the input of an adaptive filter. The output of the adaptive filter is subtracted from the AFE output to form the uncancelled echo signal. Once the filter taps have converged, the RMS value of the uncancelled echo is calculated. Since there is no far-end signal source or additive line noise, the uncancelled echo contains only noise and linearity errors generated in the transmitter and receiver.

The data sheet value for uncancelled echo is the ratio of the RMS uncancelled echo (referred to the receiver input through the receiver gain) to the nominal transmitted signal (13.5dBm into 135 $\Omega$ , or 1.74Vrms). This echo value is measured under a variety of conditions: with loopback enabled (line input disconnected); with loopback disabled under all receiver gain ranges; and with the line shorted (S<sub>1</sub> closed in Figure 4).

# LAYOUT

The analog front end of an HDSL system has a number of conflicting requirements. It must accept and deliver digital outputs at fairly high rates of speed, phase-lock to a high-speed digital clock, and convert the line input to a high-precision (14-bit) digital output. Thus, there are really three sections of the AFE1105: the digital section, the phase-locked loop, and the analog section.

The power supply for the digital section of the AFE1105 can range from 3.3V to 5V. This supply should be decoupled to digital ground with a ceramic 0.1 $\mu$ F capacitor placed as close to DGND (pin 12) and DV<sub>DD</sub> (pin 13) as possible. Ideally, both a digital power supply plane and a digital ground plane should run up to and underneath the digital pins of the AFE1105 (pins 3 through 26). However, DV<sub>DD</sub> may be supplied by a wide printed circuit board (PCB) trace. A digital ground plane underneath all digital pins is strongly recommended.

The phase-locked loop is powered from  $PV_{DD}$  (pin 2) and its ground is referenced to PGND (pin 1). Note that  $PV_{DD}$  must be in the 4.75V to 5.25V range. This portion of the AFE1105 should be decoupled with both a 10µF Tantalum capacitor

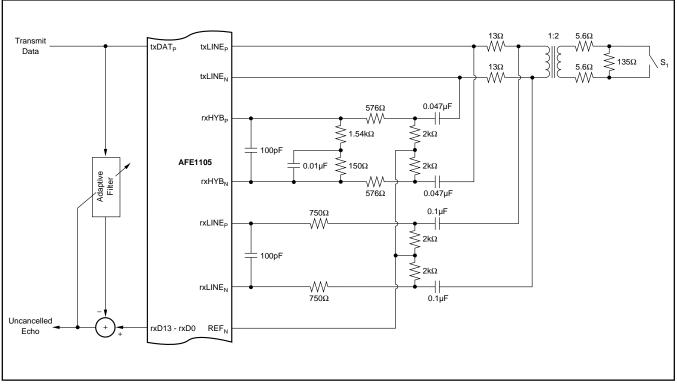



FIGURE 4. Uncancelled Echo Test Diagram.

and a  $0.1\mu$ F ceramic capacitor. The ceramic capacitor should be placed as close to the AFE1105 as possible. The placement of the Tantalum capacitor is not as critical, but should be close. In each case, the capacitor should be connected between PV<sub>DD</sub> and PGND.

In most systems, it will be natural to derive  $PV_{DD}$  from the  $AV_{DD}$  supply. A 5 $\Omega$  to 10 $\Omega$  resistor should be used to connect  $PV_{DD}$  to the analog supply. This resistor in combination with the 10 $\mu$ F capacitor form a lowpass filter—keeping glitches on  $AV_{DD}$  from affecting  $PV_{DD}$ . Ideally,  $PV_{DD}$  would originate from the analog supply (via the resistor) near the power connector for the printed circuit board. Likewise, PGND should connect to a large PCB trace or small ground plane which returns to the power supply connector underneath the  $PV_{DD}$  supply path. The PGND "ground plane" should also extend underneath PLL<sub>IN</sub> and PLL<sub>OUT</sub> (pins 47 and 48).

The remaining portion of the AFE1105 should be considered analog. All AGND pins should be connected directly to a common analog ground plane and all  $AV_{DD}$  pins should be connected to an analog 5V power plane. Both of these planes should have a low impedance path to the power supply.

Ideally, all ground planes and traces and all power planes and traces should return to the power supply connector before being connected together (if necessary). Each ground and power pair should be routed over each other, should not overlap any portion of another pair, and the pairs should be separated by a distance of at least 0.25 inch (6mm). One exception is that the digital and analog ground planes should be connected together underneath the AFE1105 by a small trace.