AG603 InGaP HBT Gain Block The Communications Edge TM

Preliminary Product Information

Product Features

- DC 2700MHz
- +18.5 dBm P1dB at 900MHz
- +33.5 dBm OIP3 at 900MHz
- 17.6 dB Gain at 900MHz
- Single Voltage Supply
- SOT-89 SMT Package
- Internally matched to 50Ω

Product Description

The AG603 is a general-purpose buffer amplifier that offers high the AG603 typically provides 17.6 dB of gain, +33.5 dBm Output IP3, and +18.5 dBm P1dB The device acceptance. performance with consistent quality to maintain MTBF values exceeding 100 years at mounting temperatures of +85°C and is housed in a SOT-89 industry standard SMT package.

The AG603 consists of Darlington pair amplifiers using the high reliability InGaP/GaAs HBT technology process technology and only requires DC-blocking capacitors, a bias resistor, and an inductive RF choke for operation.

The broadband MMIC amplifier can be directly applied to various current and next generation wireless technologies such as GPRS, GSM, CDMA, W-CDMA, and UMTS. In addition, the AG603 will work for other various applications within the DC to 2.7 GHz frequency range such as CATV and fixed wireless.

Functional Diagram

Specifications

Parameters ¹	Units	Min Typ	Max
Frequency Range	MHz	DC-2700	
S21 - Gain	dB	17.6	
S11 - Input Return Loss	dB	-15	
S22 - Output Return Loss	dB	-12	
Output P1dB	dBm	+18.5	
Output IP3	dBm	+33.5	
Noise Figure	dB	4.5	
Device Voltage	V	4.9	100
Device Current	mA	75	

Test conditions unless otherwise noted

1. T = 25°C, Supply Voltage = +6 V, R_{bias} = 10 Ω , Frequency = 900MHz, 50 Ω System.

Absolute Maximum Ratings

Parameters	Rating		
Operating Case Temperature	-40 to +85 °C		
Storage Temperature	-40 to +125 °C		
Operation of this device above any of there parameters may equal permanent demand			

Application Circuit Vs = +6 V $l_s = 75 \text{ mA}$ Bypass Capacitor Choke RF OUT C1 C2 Blocking Blocking

Typical Parameters

Parameter ¹	Units	Typical	
Frequency	MHz	900	1900
S21	dB	17.6	16
S11	dB	-20	-25
S22	dB	-15	-15
Output P1dB	dBm	+18.5	+18.1
Output IP3	dBm	+33.5	+32.3
Noise Figure	dB	4.5	4.5
Supply Voltage	V	6	6
Device Current	mA	75	75

1. Data represents typical performance in an application board with

T = 25°C, V_s = +6 V, and R_{bias} = 10 Ω in a 50 Ω system

Ordering Information

Part No.	Description
AG603-89	InGaP HBT Gain Block SOT-89 Style Package (Available in Tape & Reel)
AG603-89PCB	Fully Assembled Application Board

This document contains information on a new product. Specifications and information are subject to change without notice

³OIP measured with two tones at an output power of 0 dBm/tone separated by 10MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.

AG603-89 Package Information

Outline Drawing

mminch

Land Pattern

FUNCTION PIN NO. INPUT GROUND OUTPUT (BIAS) GROUND

Mounting Configuration

- Notes: 1. Ground vias are critical for thermal and RF grounding considerations.

 2. Two 2-56 screws with washers should be used for thermal grounding to the main chassis.

 3. Ground plane on the backside should extend past the holes for the 2-56 screws as a minimum.

 4. No soldernask should be applied to the backside where heat sink area

 - No soldermask should be applied to the backside where heat six contacts the main chassis.
 Holes for the 2-56 screws should be plated through.
 Keepout diameter for the 2-56 screw is to allow good thermal contact for the screw and washer.
 Trace width depends on PC board.
 A minimum of 1 oz. / 1 oz. copper should be used.

This document contains information on a new product. Specifications and information are subject to change without notice