International TOR Rectifier

ADVANCED ANALOG HYBRID-HIGH RELIABILITY DC/DC CONVERTERS

Description

The AHE28XXS Series of DC/DC converters feature high power density and an extended temperature range for use in military and industrial applications. Designed to MIL-STD-704D input requirements, these devices have nominal 28VDC inputs with +5V, +12V and +15V single outputs to satisfy a wide range of requirements. The circuit design incorporates a pulse width modulated push-pull topology operating in the feed-forward mode at a nominal switching frequency of 250KHz. Input to output isolation is achieved through the use of transformers in the forward and feedback circuits.

The advanced feedback design provides fast loop response for superior line and load transient characteristics and offers greater reliability and radiation tolerance than devices incorporating optical feedback circuits.

Three standard temperature grades are offered with screening options. Refer to Part Number section. They can be provided in a standard plug-in package for PC mounting or in a flanged package for more severe environments.

These converters are manufactured in a facility certified to MIL-PRF-38534. All processes used to manufacture these converters have been qualified to enable Advanced Analog to deliver compliant devices.

Two screening grades are available to satisfy a wide range of requirements. The CH grade converters are fully compliant to MIL-PRF-38534 for class H. The HB grade converters are processed to full class H screening but do not have class H element evaluation as required by MIL-PRF-38534. Both grades are fully tested and operate over the full military temperature range without derating of output power. Variations in electrical, mechanical and screening can be accommodated.

PD - 94554A

AHE28XXS SERIES

28V Input, Single Output

Features

- 17 to 40 VDC Input Range (28 VDC Nominal)
- 5V, 12V and 15V Outputs Available
- Indefinite Short Circuit and Overload Protection
- 17 W/in Power Density
- 15 and 20 Watts Output Power Models
- Fast Loop Response for Superior Transient Characteristics
- Operating Temperature Range from -55°C to +125°C Available
- Popular Industry Standard Pin-Out
- Resistance Seam Welded Case for Superior Long Term Hermeticity
- Efficiencies up to 84%
- Shutdown from External Signal
- Military Screening
- 325,000 hour MTBF at 85°C (AUC)

Extensive computer simulation using complex modeling enables rapid design modification to be provided. Contact Advanced Analog with specific requirements.

www.irf.com 投口PDF 维库 pdf.dzsc.com

1

Specifications

 T_{CASE} = -55°C to +85°C, V_{IN} = +28V ± 5% unless otherwise specified ABSOLUTE MAXIMUM RATINGS

-0.5V to 50V
Internally limited, 17.5W typical for AHE2805S, 22.5W typical for AHE2812S and AHE2815S 300°C for 10 seconds
Operating -55°C to +125°C case
Storage -65°C to +135°C

Input Voltage¹
Power Output
Soldering
Temperature Range¹

Parameter	Conditions $ -55^{\circ}C \le Tc \le +85^{\circ}C $ Vin = 28 Vdc $\pm 5\%$, $C_L = 0$ Unless otherwise specified	AHE2805S		AHE2812S		AHE2815S					
Static Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
OUTPUT Voltage Current Ripple Accuracy Power'	$V_{\rm N}{=}17$ to 40 VDC $I_{\rm out}{=}0$ to Full Load Full Load, DC to 1MHz $T_{\rm CASE}{=}25^{\rm o}{\rm C}, I_{\rm out}{=}0$	4.90 0.0 4.95 15	5.00 20 5.00	5.10 3000 60 5.05	11.76 0.0 11.88 20	12.00 30 12.00	12.24 1667 60 12.12	14.70 0.0 14.85 20	15.00 30 15.00	15.30 1333 60 15.15	VDC mADC mVp-p VDC W
REGULATION Line Load	$V_{IN} = 17 \text{ to } 40 \text{ VDC}$ $I_{OUT} = \text{ to Full Load}$		±0.5 ±0.5	±1.0 ±1.0		±0.5 ±0.5	±1.0 ±1.0		±0.5 ±0.5	±1.0 ±1.0	% %
INPUT Voltage Range ⁴ Current Ripple Current	Inhibited No Load Full Load	17.0	28.0 8	40.0 18 35 50	17.0	28.0 8 25	40.0 18 35 50	17.0	28.0 8 25	40.0 18 35 50	VDC mADC mADC mV p-p
Efficiency	T _{CASE} = +25°C Half Load to Full Load	80	82		79	83		80	84		%
Capacitive Load Load fault power dissipation ⁴	No effect on performance	500		6	200		6	200		6	μF W
Isolation	Input to Output @ 500Vdc	100			100			100			MΩ
Dynamic Characteristic Step Load Changes Output Transient Recovery ²	50% Load 100% Load No Load 50% Load 50% Load No Load 50% Load 100% Load No Load 50% Load 50% Load No Load		±150 -300 +300 25 500 7			±200 -400 +400 25 500 7			±200 -400 +400 25 500 7		mVpk mVpk mVpk µsec µsec msec
Step Line Changes Output Transient Recovery ²	Input step 17 to 40VDC Input step 40 to 17VDC Input step 17 to 40VDC Input step 40 to 17VDC		+180 -600 400 400			+180 -600 400 400			+180 -600 400 400		mVpk mVpk µsec µsec
Turn-On Overshoot Delay³ Load Fault	VIN = 17 to 40VDC IOUT = 0 to Full load VIN = 17 to 40VDC		0 8 8	500 14 14		300 8 8	600 14 14		300 8 8	500 14 14	mVpk msec msec
Recovery ⁴ Weight	Standard Package Flange Package		55 58			55 58				55 58	grams grams

Notes to Specifications

- 1. Above +85°C case temperature, derate output power linearly to 0 and maximum input voltage linearly to 42V at 115°C case.
- 2. Recovery time is measured from the initiation of the transient to where V_{OUT} has returned to within $\pm 1\%$ of V_{OUT} at 50% load. See typical waveforms.
- 3. Turn-on delay time measurement is for either an application of power at the input or a signal at the shutdown pin.
- 4. For operation at 16VDC, derate output power by 33%.

International IOR Rectifier

Specifications

 $T_{CASE} = -55$ °C to +105°C, $V_{IN} = +28V \pm 5\%$ unless otherwise specified

ABSOLUTE MAXIMUM RATINGS -0.5V to 50V

Input Voltage⁵ Power Output Internally limited, 17.5W typical for AHE2805S/ES, 22.5W typical for AHE2812S/ES and AHE2815S/ES

Soldering Temperature Range¹ 300°C for 10 seconds Operating -55°C to +125°C case Storage -65°C to +135°C

Parameter	Conditions -55°C ≤ Tc ≤ +105°C Vin = 28 Vdc ±5%,C _L = 0 Unless otherwise specified	A	HE2805S/E	:S	A	HE2812S/E	ES	A	HE2815S/E	ES	
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
Static Characteristic											
OUTPUT Voltage Current Ripple	V _{IN} =17 to 40 VDC l _{our} =0 to Full Load Full Load, DC to 1MHz T _{CASE} = 25°C, l _{our} = 0	4.90 0.0	5.00 20	5.10 3000 60	11.76 0.0	12.00 30	12.24 1667 60	14.70 0.0	15.00 30	15.30 1333 60	VDC mADC mVp-p
Accuracy Power ¹	CASE = 20 0, 1001 = 0	4.95 15	5.00	5.05	11.88 20	12.00	12.12	14.85 20	15.00	15.15	VDC W
REGULATION Line Load	$V_{IN} = 17$ to 40 VDC $I_{OUT} = 0$ to Full Load		±0.5 ±0.5	±1.0 ±1.0		±0.5 ±0.5	±1.0 ±1.0		±0.5 ±0.5	±1.0 ±1.0	% %
INPUT Voltage Range ⁴ Current Ripple Current	Inhibited No Load Full Load	17.0	28.0 8	40.0 18 35 50	17.0	28.0 8 25	40.0 18 35 50	17.0	28.0 8 25	40.0 18 35 50	VDC mADC mADC mV p-p
Efficiency	T _{CASE} = +25°C Half load to Full load	78	82	- 00	79	83	- 00	80	84		%
Capacitive Load	No effect on performance	500			200			200			μF
Load fault power dissipation ⁴				6			6			6	W
Isolation	Input to Output @ 500Vdc	100			100			100			ΜΩ
Dynamic Characteristic Step Load Changes Output Transient Recovery ²	50% Load 100% Load No Load 50% Load 50% Load No Load 50% Load 100% Load No Load 50% Load 50% Load No Load		±150 -300 +300 25 500 7			±200 -400 +400 25 500 7			±200 -400 +400 25 500 7		mVpk mVpk mVpk µsec µsec msec
Step Line Changes											
Output Transient Recovery ²	Input step 17 to 40VDC Input step 40 to 17VDC Input step 17 to 40VDC Input step 40 to 17VDC		+180 -600 400 400			+180 -600 400 400			+180 -600 400 400		mVpk mVpk μsec μsec
TURN -ON Overshoot Delay ³	V _{IN} = 17 to 40VDC I _{OUT} = 0 to Full Load		0 8	500 14		300 8	600 14		300 8	750 14	mVpk msec
Load Fault Recovery⁴	V _{IN} = 17 to 40VDC		8	14		8	14		8	14	msec
Weight	Standard Package Flange Package		60 65			60 65			60 65		grams grams

Notes to Specifications

- Above +105°C case temperature, derate output power linearly to 0 at 125°C case.
- Recovery time is measured from the initiation of the transient to where V_{out} has returned to within $\pm 1\%$ of V_{out} at 50% load. See typical waveforms.
- Turn-on delay time measurement is for either an application of power at the input or a signal at the shutdown pin.
- For operation at 16VDC, derate output power by 33%.
- Above +85°C case temperature, derate maximum input voltage linearly to 33V at +125°C case.

grams

Specifications

ABSOLUTE MAXIMUM RATINGS

Input Voltage¹ -0.5V to 50V

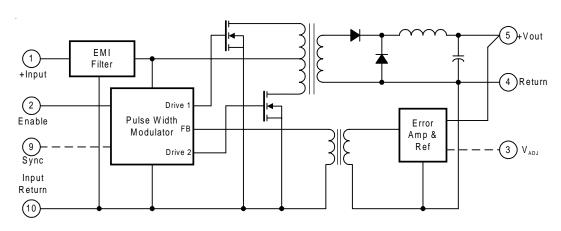
Power Output Internally limited, 17.5W typical for AHE2805S/HB&CH, 22.5W typical for AHE281XS/HB&CH

Soldering 300°C for 10 seconds

Temp Range¹ Operating -55°C to +125°C case Storage -65°C to +135°C

Parameter Conditions AHE2805S/HB&CH AHE2812S/HB&CH AHE2815S/HB&CH $-55^{\circ}\text{C} \le \text{Tc} \le +125^{\circ}\text{C}$ Vin = 28 Vdc ±5%,C_L = 0 Unless otherwise specified Min Тур Max Min Тур Max Min Тур Max Units Static Characteristic OUTPUT Voltage Current VDC mADC V_{IN} =17 to 40 VDC 4.90 5.00 5.10 11.76 12.00 12.24 14.70 15.00 15.30 I_{ουτ}=0 to Full Load Full Load, DC to 1MHz 3000 1667 1333 0.0 0.0 Ripple 20 30 30 mVp-p $T_{CASE} = 25^{\circ}C$, $I_{OUT} = 0$ Accuracy 4.95 5.00 5.05 11.88 12.00 12.12 14.85 15.00 15.15 VDC Power¹ REGULATION 15 20 20 W Line $V_{IN} = 17 \text{ to } 40 \text{ VDC}$ 5 30 35 m۷ $T_{CASE} = 25^{\circ}C$ $I_{OUT} = 0$ to Full Load 10 50 50 120 50 150 m۷ INPUT Voltage Range VDC 17.0 28.0 40.0 17.0 28.0 40.0 17.0 28.0 40.0 Inhibited mADC mADC No Load 35 35 35 20 50 50 Ripple Current Full Load 50 mV p-p $T_{\text{CASE}} = +25^{\circ}\text{C}$ Efficiency 80 82 80 83 80 84 Capacitive Load No effect on performance 500 1000 200 1000 200 1000 μF Load fault power Short Circuit T_c =25°C Overload T_c = 25°C 4.5 4.5 4.5 W Isolation Input to Output @ 500Vdc 100 100 100 МΩ Dynamic Characteristic Step Load Changes Output T_c =25°C 50% Load 100% Load mVpk ±200 ±200 ±300 No Load 50% Load Transient -300 -500 -400 -500 -400 -500 mVpk 50% Load No Load +500 +400 +400 +300 +500 +500 mVpk Recovery² 50% Load 100% Load No Load 50% Load 25 100 70 200 25 500 70 1500 25 500 70 μsec 1500 usec 50% Load No Load Step Line Changes Input step 17 to 40VDC +180 +300 +500 +180 +500 Output T_c = 25°C Transient +180 mVpk Input step 40 to 17VDC -600 -1500 mVpk Input step 17 to 40VDC Recovery 400 800 400 800 400 800 usec μsec TURN -ON $V_{IN} = 17$ to 40VDC0 Overshoot 550 300 600 300 500 mVnk Delay³ I_{out} = 0 to Full Load 10 10 8 10 msec Load Fault Recovery V_{IN} = 17 to 40VDC Standard Package 10 8 55 10 8 55 55 grams Weight

Notes to Specifications


- 1. Above +125°C case temperature, derate output power linearly to 0 at 135°C case.
- Recovery time is measured from the initiation of the transient to where V_{OUT} has returned to within ±1% of V_{OUT} at 50% load. See typical waveforms.
- 3. Turn-on delay time measurement is for either an application of power at the input or a signal at the shutdown pin.
- 4. For operation at 16VDC, derate output power by 33%.

Flange Package

5. An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit protection and is the condition of maximum power dissipation.

AHE28XXS Series

AHE28XXS Block Diagram

Application Information

Inhibit Function

Connecting the inhibit input (Pin 2) to input common (Pin 10) will cause the converter to shut down. It is recommended that the inhibit pin be driven by an open collector device capable of sinking at least 400 μA of current. The open circuit voltage of the inhibit input is 11.5 ± 1 VDC.

EMI Filter

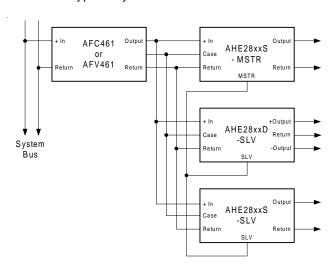
An EMI filter (AFC461), available as an option, will reduce the input ripple current to levels below the limits imposed by MIL-STD-461B CEO.

Output Voltage Adjustment (AHE2805 only)

The output voltage of the AHE2805S converter can be adjusted upward by connecting an appropriate resistor between Output Adjust (Pin 3) and Output Common (Pin 4) as shown in Table 1 below.

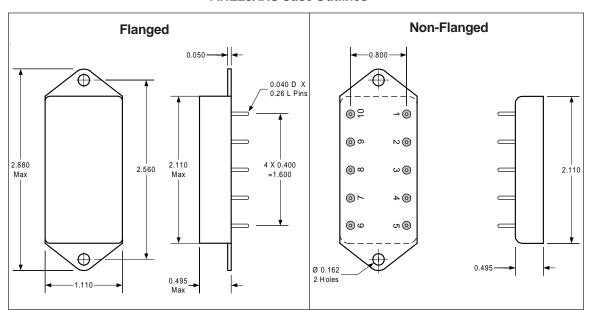
Table 1 Output adjustment resistor values

Resistance Pin 3 to 4 (Ω)	Output Voltage Increases (%)
None	0
390K	+1%
145K	+2%
63K	+3%
22K	+4%
0	+5%


Device Synchronization

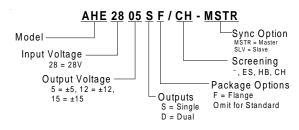
Whenever multiple DC/DC converters are utilized in a single system, significant low frequency noise may be generated due to slight difference in the switching frequencies of the converters (beat frequency noise). Because of the low frequency nature of this noise (typically less than 10KHz), it is difficult to filter out and may interfere with proper operation of sensitive systems (communications, radar or telemetry). Advanced Analog offers an option, which provides synchronization of multiple AHE/ATW/ATO type converters, thus eliminating this type of noise.

To take advantage of this capability, the system designer must assign one of the converters as the master. Then, by definition, the remaining converters become slaves and will operate at the masters' switching frequency. The user should be aware that the synchronization system is fail-safe; that is, the slaves will continue operating should the master frequency be interrupted for any reason. The layout must be such that the synchronization output (pin 9) of the master device is connected to the synchronization input (pin 9) of each slave device. It is advisable to keep this run short to minimize the possibility of radiating the 250KHz switching frequency.


The appropriate parts must be ordered to utilize this feature. After selecting the converters required for the system, a MSTR suffix is added for the master converter part number and a SLV suffix is added for slave part number. See Part Number section.

Typical Synchronization Connection

AHE28XXS Series


AHE28XXS Case Outlines

Pin Designation

Pin No.	Designation	
1	Positive Input	
2	Enable Input	
3	Output Adjust *	
4	Output Return	
5	Positive Output	
6	N/C	
7	N/C	
8	Case Ground	
9	N/C or Sync.	
10	Input Return	

Part Numbering

^{*} AHE2805S only. AHE2812S / 2815S have N/C on Pin 3

Available Screening Levels and Process Variations for AHE28XXS Series

Requirement	MIL-STD-883 Method	No Suffix	ES Suffix	HB Suffix	CH Suffix
Temperature Range		-20 to +85°C	-55°C to +125°C	-55°C to +125°C	-55°C to +125°C
Element Evaluation					MIL-PRF-38534
Internal Visual	2017	*	Yes	Yes	Yes
Temperature Cycle	1010		Cond B	Cond C	Cond C
Constant Acceleration	2001		500g	Cond A	Cond A
Burn-in	1015	48hrs @ 85°C	48hrs @ 125°C	160hrs @ 125°C	160hrs @ 125°C
Final Electrical (Group A)	MIL-PRF- 38534 & Specifications	25°C	25°C	-55, +25, +125°C	-55, +25, +125°C
Seal, Fine & Gross	1014	Cond C	Cond A, C	Cond A, C	Cond A, C
External Visual	2009	*	Yes	Yes	Yes

^{*} Per Commercial Standards

Available Standard Military Drawing (SMD) Cross Reference

Standard Military Drawing PIN	Vendor CAGE Code	Vendor Similar PIN
5962-8968301HXX	52467	AHE2805S/CH
5962-8968301HZX	52467	AHE2805SF/CH
5962-8968302HXX	52467	AHE2805S/CH-SLV
5962-8968302HZX	52467	AHE2805SF/CHSLV
5962-8968303HXX	52467	AHE2805S/CH-MSTR
5962-8968303HZX	52467	AHE2805SF/CH-MSTR

Standard Military Drawing PIN	Vendor CAGE Code	Vendor Similar PIN
5962-9158001HXX	52467	AHE2812S/CH
5962-9158001HZX	52467	AHE2812SF/CH
5962-9158002HXX	52467	AHE2812S/CH-SLV
5962-9158002HZX	52467	AHE2812SF/CH-SLV
5962-9158003HXX	52467	AHE2812S/CH-MSTR
5962-9158003HZX	52467	AHE2812SF/CH-MSTR

Standard Military Drawing PIN	Vendor CAGE Code	Vendor Similar PIN
5962-9162501HXX	52467	AHE2815S/CH
5962-9162501HZX	52467	AHE2815SF/CH
5962-9162502HXX	52467	AHE2815S/CH-SLV
5962-9162502HZX	52467	AHE2815SF/CH-SLV
5962-9162503HXX	52467	AHE2815S/CH-MSTR
5962-9162503HZX	52467	AHE2815SF/CH-MSTR

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 ADVANCED ANALOG: 2270 Martin Av., Santa Clara, California 95050, Tel: (408) 727-0500 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 10/02