GaAs MMIC VSAT Power Amplifier 2.0W 14.0 - 14.5 GHz

Features

• High Linear Gain: 22 dB Typ.

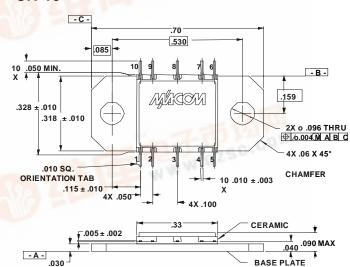
High Saturated Output Power: +33 dBm Typ.
High Power Added Efficiency: 22% Typ.

• High P_{1dB}: 32 dBm Typ.

• 50Ω Input/Output Broadband Matched

Integrated Output Power Detector

High Performance Ceramic Bolt Down Package


Description

M/A-COM's AM42-0007 is a three-stage MMIC linear power amplifier in a ceramic bolt down style hermetic package. The AM42-0007 employs a fully matched chip with internally decoupled Gate and Drain bias networks and an ouput power detector. The AM42-0007 is designed to be operated from a constant voltage Drain supply.

The AM42-0007 is designed for use as an output stage or a driver, in applications for VSAT systems. This design is fully monolithic and requires a minimum of external components.

M/A-COM's AM42-0007 is fabricated using a mature 0.5 micron GaAs MESFET process. The process features full passivation for increased performance and reliability. This product is 100% RF tested to ensure compliance to performance specifications.

CR-15

Notes: (unless otherwise specified)

1. Dimensions are in inches.

2. Tolerance: $.XXX = \pm 0.005$ $.XX = \pm 0.010$

Ordering Information

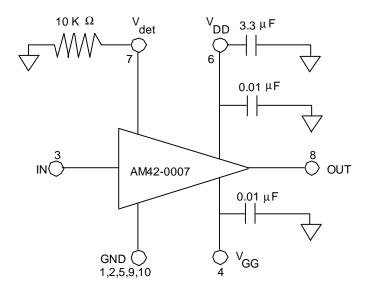
Part Number	Package	
AM42-0007	Ceramic Bolt Down Package	

Electrical Specifications: $T_c = +25^{\circ}C$, VDD = +9V, VGG = -5.0V, $Z_0 = 50\Omega$, Frequency = 14.0-14.5 GHz

Parameter	Abbv.	Test Conditions	Units	Min.	Тур.	Max.
Linear Gain	GL	$P_{IN} \le 0 \text{ dBm}$	dB	19	22	7 - I
Input VSWR	VSWR _{IN}	$P_{IN} \le 0 \text{ dBm}$	_		2.5:1	2.7:1
Output VSWR	VSWR _{ou}	$P_{IN} \le 0 dBm$	_	A 18	2.7:1	O to _
Saturated Output Power	P _{SAT}	P _{IN} = +14 dBm	dBm	= W.V	33	_
Output Power @	P _{1dB}	A	dBm	31	32	_
Output IP ₃	IP ₃	(Refer to Note 1)	dBm	_	41	_
Power Added Efficiency	PAE	P_{IN} = +14 dBm	%	_	22	_
Bias Currents	I _{GG}	P_{IN} = +14 dBm	mA		18	25
Thermal Resistance	θ _{JC}	25°C Heat Sink	°C/W	_	9.5	_
Detector Output Voltage	V _{det}	$R_L=10K\Omega$, $P_{OUT}=+31dBm$	V	_	+3.5	_

IP₃ is measured with two +24 dBm output tones @ 1 MHz spacing.

V 4.0

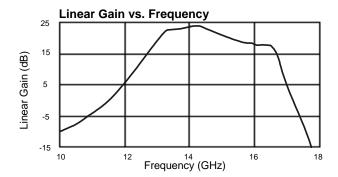

cifications subject to change without notice.

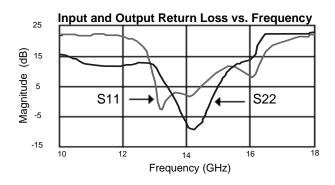
Absolute Maximum Ratings^{1,2,3,4}

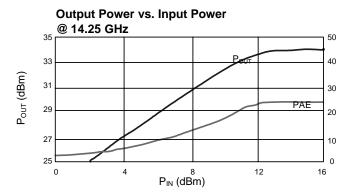
Parameter	Absolute Maximum
V_{DD}	12 Volts
V_{GG}	-10 Volts
Power Dissipation	13.2 W
RF Input Power	+23 dBm
Channel Temperature	150°C
Storage Temperature	-65°C to +150°C
I _{ds}	2100 mA

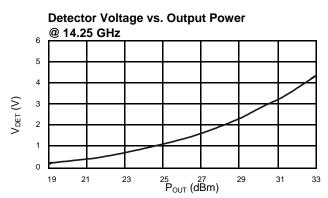
- 1. Operation of this device outside any of these limits may cause permanent damage.
- Case Temperature $(T_C) = +25$ °C.
- 3. Nominal bias is obtained by first connecting -5 volts to pin 4 (V_{GG}), followed by connection +9 volts to pin 6 (V_{DD}). Note sequence.
- 4. RF ground and thermal interface is the flange (case bottom). Adequate heat sinking is required.
- 5. No dc bias voltage appears at the RF ports.
- 6. The dc resistance at the input port is an open circuit and at the ouput port is a short circuit.
- 7. For optimum $\ensuremath{\mathsf{IP}}_3$ performance, the $\ensuremath{\mathsf{V}}_{DD}$ bypass capacitors should be placed within 0.5 inches of pin 6.

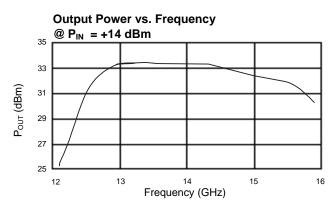
Typical Bias Configuration^{3,4,7}




Pin Configuration


Pin No.	Pin Name	Description
1	GND	DC and RF Ground
2	GND	DC and RF Ground
3	IN	RF Input
4	V_{GG}	Gate Supply
5	GND	DC and RF Ground
6	V_{DD}	Voltage Drain Supply
7	V_{det}	Output Power Detector
8	OUT	RF Output
9	GND	DC and RF Ground
10	GND	DC and RF Ground


Typical Performance @ +25°C


Test Conditions are listed in the section "Electrical Specifications".

