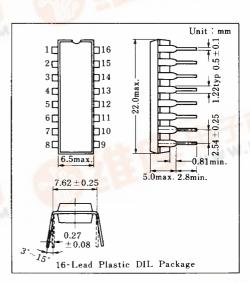
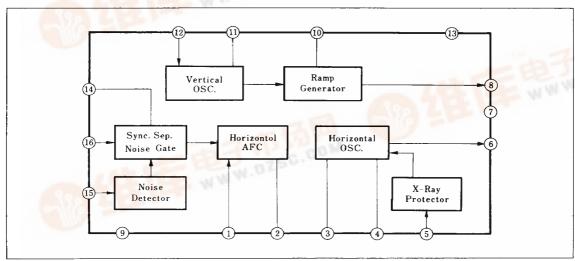
山化

AN5431N


カラーテレビ偏向信号処理回路/Color TV Deflection Signal Processing Circuit

■ 概 要/Description

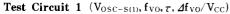

AN 5431 N は、カラーテレビの偏向信号処理回路用に設計された 半導体集積回路です。

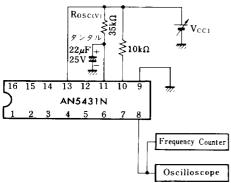
■ 特 徵/Features

- 電源電圧変動,温度変化に対して安定な垂直,水平発振回路を 内確
- ●雑音に対して安定な同期分離回路を内蔵
- ●高圧保護回路を内蔵
- Incorporating vertical and horizontal oscillator circuit operations highly stable against changes in supply voltage and temperature
- Highly stable synchro separation circuit against noise
- Built-in high tension protector circuit

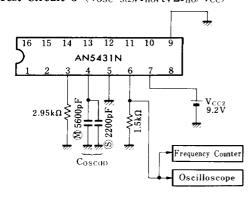
■ ブロック図/Block Diagram

■ 絶対最大定格/Absolute Maximum Rating (Ta=25°C)

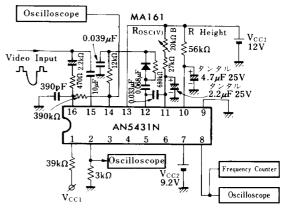

-	Item	Symbol	Rat	ing	Unit
電 圧	電源電圧	V ₇₋₉	12.0		v
		V_{13-9}	14.4		V
	回路電圧	V_{1-9}	0	10	V
		V_{10-9}	0	V ₁₃₋₉	V
		V_{11-9}	0	10	V
		V_{15-9}	0	6	V
		V_{16-9}	-3	1	V
	電源電流	I ₇	15		m A
		I_2	-10	10	m A
		I ₃	-5	0	m A
		I_4	-3	3	m A
電 流	回路電流	I ₅	-1	1	m A
	四幹电心	I ₆	0	30	m A
		Ι ₈	1	2	m A
		I_{11}	0	20	m A
		I ₁₄	1	20	m A
許容損失	-	P_D	4	70	mW
温度	動作周囲温度	T_{opr}	-20~+70		°C
	保存温度	$T_{\rm stg}$	$-55 \sim +150$		°C

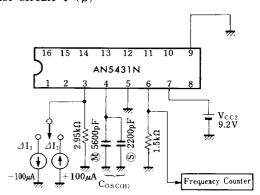

注) 回路電流では⊕は回路へ流人する電流であり、⊖は流出する値である。

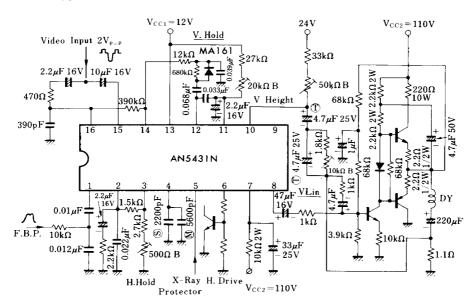
■ 電気的特性/Electrical Characteristics (Ta=25°C)


Item	Symbol	Test Circuit	Condition	min.	typ.	max.	Unit
□ ## ₹\.t	I 7		$V_{7-9} = 9.2V$	8.0	11.5	15.0	mA
回路電流	I ₁₃		$V_{13-9} = 12V$	9.5	15.0	20.0	mA
X線プロテクタ動作電圧	V ₅₋₉		$V_{7-9} = 9.2V$	0.5		0.65	V
発振開始電圧(V-Osc)	Vosc-s(1)	1	fvoが 40~60Hz で出力 3 V _{P-P} 以上に なる Vcc			6	V
垂直発振周波数	fvo	1	$Rosc(v) = 35k\Omega$ の時の f_{osc} , $V_{CC} = 12V$	47	50	53	Hz
パルス幅(V-Osc)	τ	1	$Rosc(v) = 35k\Omega$ の時の発振パルス幅, $Vcc = 12V$	420	600	780	μs
fvo電源電圧依存度	4fvo/Vcc	1	V _{CC1} =14.4V と 9.6V の時の fvo の差	-0.5	0	1	Hz
垂直引込範囲	f VP	2	ビデオ入力 2.0V _{P-P} , V _{CC} =12V		33	36	Hz
発振開始電圧(H-Osc)	V _{OSC-S(2)}	3	f _{HO} が 10~20kHz で出力が 2V _{P-P} 以上になる V _{CC2}			6	V
水平発振周波数	fно	3	R _{OSC(H)} = 2.95kΩの時の発振周波数。	15.0	15.75	16.25	kHz
パルス幅デューティ比(H-Osc)	τ	3	$V_{CC2}=9.2V$	31.5	35.4	38.9	%
f _{HO} 電源電圧依存度	⊿f Ho/Vcc	3	V _{CC2} =8.2V と 10.2V の時の f _{HO} の差	0	60	120	Hz
制御感度(H-Osc)	β	4	⊿ I₁±100μA 流入出時の f _{HO} の差	19.8	21.8	23.8	Hz/μA
fнo 周囲温度依存度 *1	⊿fно/Та		$Ta = -20^{\circ}C \sim +70^{\circ}C$	-150		150	Hz
直流ループ利得 *1	f DC			7.2	9.7	12.2	kHz/rad
fvo 周囲温度依存度 *1	⊿f vo/Ta		$Ta = -20^{\circ}C \sim +70^{\circ}C$			1	Hz

^{*1} 設計参考値




Test Circuit 3 $(V_{\rm OSC-S(2)}, f_{\rm HO}, \tau, \Delta f_{\rm HO}/V_{\rm CC})$


Test Circuit 2 (fvp)

Test Circuit 4 (3)

■ 応用回路例/Application Circuit

