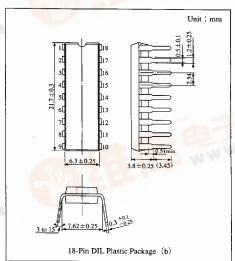
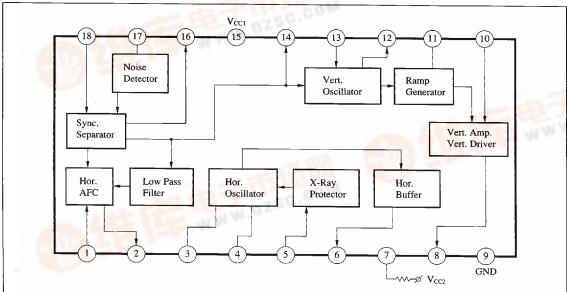


AN5436N


Color TV Deflection-Signal Processing IC

Overview

The AN5436N is an integrated circuit designed for color TV deflection-signal processing circuit. It can operate with 12V power supply and is suitable for compact and mediumsize color TV set.


Features

- Built-in vertical deflection driver circuit
- Incorporating vertical and horizontal oscillator circuit, it operates with high stability against changes of supply voltage and temperature
- Highly stable synchronous separation circuit against noise
- Built-in high voltage-protection circuit (X-ray protection)
- 12V supply voltage operation

■ Block Diagram

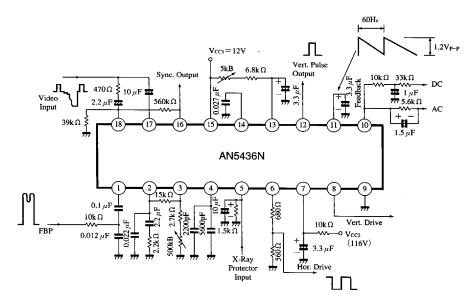
= 6932852 0014328 215 **=**

■ Pin Descriptions

Pin No.	Pin name	Pin No.	Pin name
1	AFC ref. signal input	10	DC, AC feedback input
2	Hor. AFC output	11	Vert. saw-tooth capacitor
3	Hor. hold volume	12	Vert. pulse output
4	Hor. osc. capacitor	13	Vert. hold volume
5	X-ray protector input	14	Vert. integral capacitor
6	Hor. output	15	V _{CC1}
7	V _{CC2}	16	Sync. sep. output
8	Vert. output	17	Noise det. input
9	GND	18	Video signal input

■ Absolute Maximum Ratings $(Ta=25^{\circ}C)$

Parameter		Symbol	Rating		Unit
Voltage	Supply voltage	V ₇₋₉	10.5		v
		V ₁₅₋₉	14.4		V
	Circuit voltage	V ₁₋₉	0	10	V
		V ₁₀₋₉	0	V ₁₅₋₉	v
		V ₁₂₋₉	0	10	v
		V ₁₇₋₉	0	6	V
		V ₁₈₋₉	-3	2	v
	Supply current	I ₇	16		mA
		I ₁₅	23		mA
	Circuit current	I_2	-3	3	mA
		I_3	-5	0	mA
Current		I ₄	-3	3	mA
Current		I ₅	-1	1	mA
		I ₆	-30	0	mA
		I_8	-30	0	mA
		I ₁₂	-2	1	mA
		I ₁₃	0	30	mA
Power dissipation		P _D	500		mW
Temperature	Operating ambient temperature	Topr	-20 to +70		c
	Storage temperature	T _{stg}	-55 to +150		C


Note) "+" and "-" are flow-in and flow-out currents to/from the circuit, respectively.

■ Electrical Characteristics $(Ta=25^{\circ}C)$

Parameter	Symbol	Condition	min	typ	max	Unit
Circuit current	I ₇	Apply 12V with 200 to Pin⑦	7.5	12.0	15.5	mA
Circuit current	\mathbf{I}_{15}	$V_{15-9} = 12V$	18.0	25.0	33.0	mA
Protector operating voltage	V ₅₋₉	Apply 12V with 200 to Pin⑦	0.73		0.86	v
Oscillation starting voltage $(V \cdot O_{SC.})$	$V_{OSC-S(1)}$	f_{VO} =40 to 60Hz, 0.7 V_{P-P} or more		_	6	v
Vertical oscillation frequency	fvo	$V_{CCI} = 12V, R_{OSC(V)} = 9.5k \Omega$	47	50	53	Hz
fvo supply voltage dependency	⊿ f _v /Ta	f _{VO} 9.6V to f _{VO} 14.4V	0	1.0	1.3	Hz
Pulse Width (V · O _{SC.})	τ	$V_{CC1}=12V, R_{OSC(V)}=9.5k\Omega$	420	600	780	μs
Vertical pull-in range	f _{VP}	$V_{CC1}=12V, R_{OSC(V)}=9.5k\Omega$		43	47	Hz
Vertical saw-tooth wave amplitude	U(saw)	$V_{CCi} = 12V, R_{OSC(V)} = 9.5k\Omega$	0.9	1.2	1.5	V _{P-P}
f _{VO} ambient temperature dependency *	⊿ f _∨ /Ta	Ta=-20 to +70°C		0.8		Hz/℃
$v_{(\text{saw})}$ ambient temperature dependency *	Δυ _(saw) /Ta	Ta=-20 to +70℃		_	30	mV _{P−P} /C
Oscillation-starting voltage	V _{OSC-S(2)}	$f_{HO} = 10$ to 20kHz, $1V_{P-P}$ or more	_	_	6	V
Horizontal oscillation frequency	f _{HO}	$V_{CC2} = 12V, R_{OSC(H)} = 2.95k \Omega$	15.0	15.75	16.25	kHz
f _{HO} supply voltage dependency	⊿ f _{HO} /V _{CC}	f _{HO} 9.6V to f _{HO} 14.4V	0	100	200	Hz
Pulse width duty ratio (H · O _{SC.})	τ	V _{CC2} =12V	31.5	35.4	38.9	%
f _{HO} control sensitivity	β	$I_0 = \pm 100 \mu A$	19	21	23	HzμA
f _{HO} ambient temperature dependency *	⊿ f _{HO} /Ta	Ta=−20 to +70℃	-1.67	_	1.67	Hz/°C
AFC loop gain *	f _{AFC}	$\mu \times \beta$	6	8	10	kHz/ra

■ Application Circuit

^{*} Reference value for design