AN5769

H／V convergence correction IC

Overview

The AN5769 is an IC to correct convergence in horizontal and vertical directions．It is possible to allow $\pm 100 \mathrm{~mA}$（max．）DC current flow by connecting a coil between the output pins which operate with the reverse phase each other．

Features

－DC control input 0 V to 5 V
－Output dynamic range 1.2 V to 3.8 V
－Maximum output current $\pm 100 \mathrm{~mA}$

Applications

－CRT monitors

Block Diagram

（2）PDF
椎厍

- Pin Descriptions

Pin No.	Description	Pin No.	Description
1	Power supply 12 V $\left(\mathrm{V}_{\mathrm{CC} 1}\right)$	6	Output block GND (GND3)
2	Output block power supply 7 V $\left(\mathrm{V}_{\mathrm{CC} 2}\right)$, protection resistor is required.	7	H-conv. positive output
	Output block power supply 7 V $\left(\mathrm{V}_{\mathrm{CC} 3}\right)$,	8	H-conv. negative output
	protection resistor is required.	10	Output block GND (GND2)
4	H-conv. control input	11	V-conv. positive output
5	V-conv. control input	12	GND (GND1)

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	$\mathrm{V}_{\mathrm{CC} 1}$	13.5	V
	$\mathrm{~V}_{\mathrm{CC} 2}$	11.05	
	$\mathrm{~V}_{\mathrm{CC} 3}$	11.05	mA
Supply current	$\mathrm{I}_{\mathrm{CC} 1}$	28	
	$\mathrm{I}_{\mathrm{CC} 2}$	150	150
	$\mathrm{I}_{\mathrm{CC} 3}$	mW	
Operating ambient temperature ${ }^{* 1}$	P_{D}	$\mathrm{T}_{\mathrm{opr}}$	171
Storage temperature ${ }^{* 1}$	$\mathrm{~T}_{\mathrm{stg}}$	-25 to +75	${ }^{\circ} \mathrm{C}$

Note) 1. *1: Except for the operating ambient temperature and storage temperature, all ratings are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$.
*2: The power dissipation shown is for the IC package at $\mathrm{T}_{\mathrm{a}}=75^{\circ} \mathrm{C}$.
2. Pay attention to a breakdown to be caused by static electricity for pin 1.
3. Observe the following order of the supply power start-up:

- Turn-on order First: Pin 2, pin 3 on (7 V) power supply Second: Pin 1 on (12 V) power supply
- Turn-off order First: Pin 1 off (12 V) power supply

Second: Pin 2, pin 3 off (7 V) power supply

Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	$\mathrm{V}_{\mathrm{CC} 1}$	10.8 to 13.2	V
	$\mathrm{~V}_{\mathrm{CC} 2}$	6.0 to 9.0	
	$\mathrm{~V}_{\mathrm{CC} 3}$	6.0 to 9.0	

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Circuit current 1	$\mathrm{I}_{\mathrm{CC} 1}$	$\mathrm{~V}_{\mathrm{CC} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=\mathrm{V}_{\mathrm{CC} 3}=7 \mathrm{~V}$	17	22	27	mA
Circuit current 2	$\mathrm{I}_{\mathrm{CC} 2}$	$\mathrm{~V}_{\mathrm{CC} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=\mathrm{V}_{\mathrm{CC} 3}=7 \mathrm{~V}$	-	0	1	mA
Circuit current 3	$\mathrm{I}_{\mathrm{CC} 3}$	$\mathrm{~V}_{\mathrm{CC} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=\mathrm{V}_{\mathrm{CC} 3}=7 \mathrm{~V}$	-	0	1	mA
Circuit voltage 7	V_{7-6}	$\mathrm{~V}_{\mathrm{CC} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=\mathrm{V}_{\mathrm{CC} 3}=7 \mathrm{~V}$	2.8	3.0	3.2	V
Circuit voltage 8	V_{8-6}	$\mathrm{~V}_{\mathrm{CC} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=\mathrm{V}_{\mathrm{CC} 3}=7 \mathrm{~V}$	2.8	3.0	3.2	V
Circuit voltage 10	V_{10-9}	$\mathrm{~V}_{\mathrm{CC} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=\mathrm{V}_{\mathrm{CC} 3}=7 \mathrm{~V}$	2.8	3.0	3.2	V
Circuit voltage 11	V_{11-9}	$\mathrm{~V}_{\mathrm{CC} 1}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC} 2}=\mathrm{V}_{\mathrm{CC} 3}=7 \mathrm{~V}$	2.8	3.0	3.2	V
H-conv. output voltage 1	$\mathrm{E}_{\mathrm{H} 1}$	$\mathrm{~V}_{7}-\mathrm{V}_{8}$ at $\mathrm{V}_{4}=2.5 \mathrm{~V}$	-0.15	0	+0.15	V
H-conv. output voltage 2	$\mathrm{E}_{\mathrm{H} 2}$	$\mathrm{~V}_{7}-\mathrm{V}_{8}$ at $\mathrm{V}_{4}=5 \mathrm{~V}$	+2.3	+2.5	+2.7	V
H-conv. output voltage 3	$\mathrm{E}_{\mathrm{H} 3}$	$\mathrm{~V}_{7}-\mathrm{V}_{8}$ at $\mathrm{V}_{4}=0 \mathrm{~V}$	-2.7	-2.5	-2.3	V
V-conv. output voltage 1	$\mathrm{E}_{\mathrm{V} 1}$	$\mathrm{~V}_{10}-\mathrm{V}_{11}$ at $\mathrm{V}_{5}=2.5 \mathrm{~V}$	-0.15	0	+0.15	V
V-conv. output voltage 2	$\mathrm{E}_{\mathrm{V} 2}$	$\mathrm{~V}_{10}-\mathrm{V}_{11}$ at $\mathrm{V}_{5}=5 \mathrm{~V}$	+2.3	+2.5	+2.7	V
V-conv. output voltage 3	$\mathrm{E}_{\mathrm{V} 3}$	$\mathrm{~V}_{10}-\mathrm{V}_{11}$ at $\mathrm{V}_{5}=0 \mathrm{~V}$	-2.7	-2.5	-2.3	V

- Design reference data

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
High-level H-conv. output fluctuation with supply voltage	$\Delta \mathrm{E}_{\mathrm{H} / \mathrm{VCCH}}$	$\Delta \mathrm{E}$ with $\mathrm{V}_{\mathrm{CC} 1}$ change 12 V to 13.2 V, and $\mathrm{V}_{\mathrm{CC} 2}, \mathrm{~V}_{\mathrm{CC} 3}$ from 7 V to 9 V	-0.1	-	+0.1	V
Low-level H-conv. output fluctuation with supply voltage	$\Delta \mathrm{E}_{\mathrm{H} / \mathrm{VCCL}}$	$\Delta \mathrm{E}$ with $\mathrm{V}_{\mathrm{CC} 1}$ change 12 V to 10.8 V, and $\mathrm{V}_{\mathrm{CC} 2,} \mathrm{~V}_{\mathrm{CC} 3}$ from 7 V to 6 V	-0.1	-	+0.1	V
High-level V-conv. output fluctuation with supply voltage	$\Delta \mathrm{E}_{\mathrm{V} / \mathrm{VCCH}}$	$\Delta \mathrm{E}$ with $\mathrm{V}_{\mathrm{CC} 1}$ change 12 V to 13.2 V, and $\mathrm{V}_{\mathrm{CC} 2}, \mathrm{~V}_{\mathrm{CC} 3}$ from 7 V to 9 V	-0.1	-	+0.1	V
Low-level V-conv. output fluctuation with supply voltage	$\Delta \mathrm{E}_{\mathrm{V} / \mathrm{VCCL}}$	$\Delta \mathrm{E}$ with $\mathrm{V}_{\mathrm{CC} 1}$ change 12 V to 10.8 V, and $\mathrm{V}_{\mathrm{CC} 2,} \mathrm{~V}_{\mathrm{CC} 3}$ from 7 V to 6 V	-0.1	-	+0.1	V
H-conv. output fluctuation with temperature	$\Delta \mathrm{E}_{\mathrm{H} / \mathrm{Ta}}$	$\Delta \mathrm{E}$ with T_{a} change from $+25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and with T_{a} change from $+25^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$	-0.1	-	+0.1	V
V-conv. output fluctuation with temperature	$\Delta \mathrm{E}_{\mathrm{V} / \mathrm{Ta}}$	$\Delta \mathrm{E}$ with T_{a} change from $+25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and with T_{a} change from $+25^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$	-0.1	-	+0.1	V

Terminal Equivalent Circuits

Pin No.	Equivalent circuit	Description	DC voltage (V)
1	(1) $\longrightarrow \mathrm{V}_{\mathrm{CC} 1}$	Power supply $12 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC} 1}\right)$: Power supply pin Apply DC 12 V .	12
2		Output block power supply $7 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC} 2}\right)$: Power supply pin for V-conv. output Apply DC 7 V via protective resistor.	7
3		Output block power supply $7 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CC}}\right)$: Power supply pin for H -conv. output Apply DC 7 V via protective resistor.	7
4		H-conv. control input: Control input for H-conv. Apply DC 0 V to 5 V . (typ. $=2.5 \mathrm{~V}$)	-
5		V-conv. control input: Control input for V-conv. Apply DC 0 V to 5 V . (typ. $=2.5 \mathrm{~V}$)	-
6		GND3: Grounding pin of H-conv. output block	0

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	DC voltage (V)
7		H-conv. positive output: Positive output pin for H -conv. Outputs polarity as same as that of pin 4.	1.7 to 4.2
8	(8)	H-conv. negative output: Negative output pin for H-conv. Outputs polarity opposite to that of $\operatorname{pin} 4$.	1.7 to 4.2
9		GND2: Grounding pin of V-conv. output block	0
10	(10)	V-conv. positive output: Positive output pin for V-conv. Outputs polarity as same as that of pin 5 .	1.7 to 4.2
11	(11)	V-conv. negative output: Negative output pin for V-conv. Outputs polarity opposite to that of pin 5 .	1.7 to 4.2
12		GND1: Grounding pin for 12 V -system	0

Application Circuit Example

