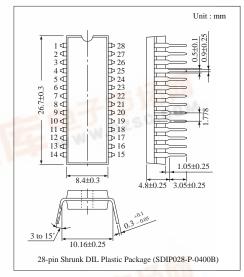
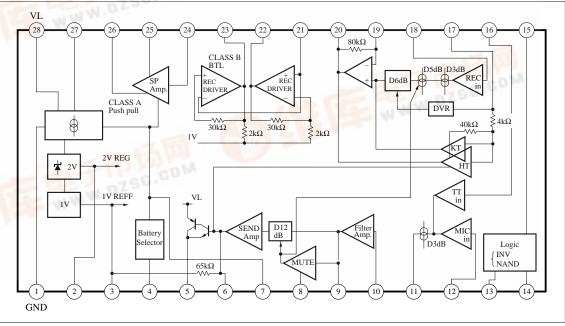
捷多邦,专业的时样工厂,24小时加急出货 Panasonic

AN6425K

Speech Network Circuit


Overview


查询AN6425供应商

The AN6425K is a high-function speech network IC with speaker amplifier. It incorporates a transmitter-system non-linear circuit, receiver digital VRs, etc. and is suitable for realizing the multifunctional telephone sets.

Features

- Speech network IC for the multifunctional telephone sets
- Capable of interfacing with the light-weight small receivers and ECM transmitters
- Built-in 2V REG constant voltage source (2V typ) for ECM
- Built-in non-linear circuits in the transmitter and receiver systems in order to eliminate ambient noises
- Built-in speaker amplifier and capable of driving with a main wire current
- Built-in hold-tone amplifier, key-in-tone amplifier, and DTMF transmitter, and capable of setting the mode with the control pins
- Automatic gain control (automatic pad function) according to a circuit curret
- Built-in tertiary active filter circuit and capable of sending a DTMF circuit with much higher harmonic at a low distortion factor
- Built-in single touch receiver volume-up function (about 6dB)

■ Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit
Supply voltage	VL	14.4 *	V
Supply current	IL	120 *	mA
Power dissipation	PD	1200 *	mW
Operating ambient temperature	T _{opr}	-20 to + 65	°C
Storage temperature	T _{stg}	-55 to +150	°C

* Vcc \times Icc <1200mW

■ Recommended Operating Range (Ta=25°C)

Parameter	Symbol	Range
Operating supply voltage range	$V_{\rm L}$	3 to 12V

■ Electrical Characteristics (Ta=25°C)

Parameter	Symbol	Condition	min	typ	max	Unit
Receiver gain	Gv (REC)	Open between the Pins19 and 20. Measure the output between the Pins22 and 23 when a signal (-55dBm) is input to the Pin18.	48	50.5	53	dB
Receiver distortion factor	THD (REC)	Open between the Pins19 and 20. Measure the out- put distortion factor between the Pins 22 and 23 when a signal (-55dBm) is input to the Pin18.		1	5	%
Receiver maximum output voltage	V ₀ (REC)	Input a signal to the Pin18 and measure the output between the Pins22 and 23 at an output distortion factor of 5%.	0	+3		dBm
D Automatic pad	AP (REC)	Input a signal (-45 dBm) to the Pin18 and measure an output change between the Pins22 and 23 when I _L changes from 80mA to 30mA.	-6	-3	-1.5	dB
D Receiver noise prevention	MUTE (REC)	Input a signal (-45dBm) to the Pin18 and measure an output change between the Pins 22 and 23 when the Pin12 changes from no microphone input signal to -40dBm.	-7	-5	-3	dB
Receiver D digital VR	DVR	Input a signal (-45dBm) to the Pin18 and measure an output change between the Pins 22 and 23 when the Pin12 is set from H to L.	4	6	8	dB
Receiver noise output	V _{no} (REC)	Measure the output between the Pins22 and 23 when there is no signal at the Pin18.		-50	-45	dBm
Transmitter gain	G _V (SEND)	Open bitween the Pins3 and 6. Measure the output between the Pins28 and 1 when a signal (-45dBm) is input to the Pin12.	40	42.5	45	dB
Transmitter distortion factor	THD (SEND)	Open between the Pins3 and 6. Measure the output distortion factor between the Pins28 and 1 when a signal (-45dBm) is input to the Pin12.		1.5	5	%
Transmitter maximum transmission level	Vo (SEND)	Input a signal to the Pin12 and measure the output between the Pins28 and 1 at an output distortion factor of 5%.	2	5		dBm
Transmitter D automatic pad	AP (SEND)	Input a signal (-35dBm) to the Pin12 and measure an output change between the Pins 28 and 1 when I _L changes from 80mA.	-6	-3	-1.5	dB
Transmitter noise prevention	V _{no} (SEND)	Measure the output between the Pins28 and 1 when there is no signal at the Pin18.		-65	-60	dBm
HOLD TONE gain	G _V (HOLD)	Ground the Pin24. Input a signal (-30dBm) to the Pin17 and measure the output change between the Pins 28 and 1.	23.5	26.5	29.5	dB
TOUCH TONE gain	Gv (TOUCH)	Ground a signal (–45dBm) to the Pin16 and measure the out- put between the Pins28 and 1.	39	41.5	44	dB
TOUCH TONE distortion factor	THD (TOUCH)	Ground the Pin14. Input a signal (-45dBm) to the Pin16 and measure the output distortion factor between the Pins 28 and 1.		1	3	%

* $I_L{=}30mA$ and Freq=1kHz unless otherwise specified.

■ Electrical Characteristics (cont.) (Ta=25°C)

Parameter	Symbol	Condition	min	typ	max	Unit
TOUCH TONE D automatic pad	AP (TOUCH)	Ground the Pin14. Input a signal (-45 dBm) to the Pin16 and measure an output change between the Pins 28 and 1 when I _L changes from 80mA to 30mA.	-6	-3	-1.5	dB
SP amplifier gain	Gv (SP)	Ground the Pin15. Input a signal (-50dBm) to the Pin24 and measure the output between the Pins 25 and 26.	45	50		dB
SP distortion factor	THD (SP)	Ground the Pin15. Input a signal (-50dBm) to the Pin24 and measure the output distor- tion factor between the Pins 25 and 26.			10	%

* I_L =30mA and Freq=1kHz unless otherwise specified.

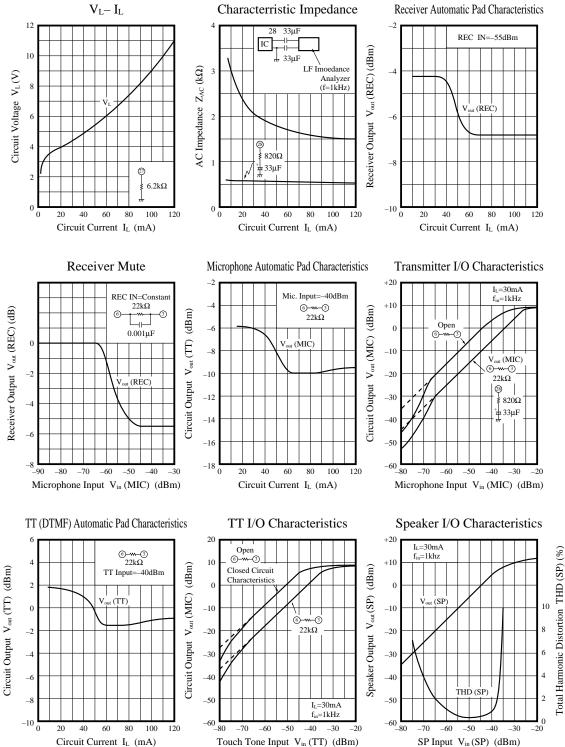
■ Pin Descriptions

Pin No.	Pin name	Typical waveform	Description	Equivalent circuit
1	GND	DC 0V	Ground pin. Connect to the output of the diode bridge.	
2	2V REG	DC 2V	2V internal stabillized power supply output pin. Connect to GND via 220 μ F. The current obtainable from this pin is 5mA or less (at I _L =20mA).	2 <u>2</u> <u>2</u> <u>2</u> <u>2</u> <u>REG</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u> <u>7</u>
3	1V REF	DC 1V	1V reference coltage output pin. Connect to GND via 47μF. No current is allowed to be input/output from this pin.	$ \begin{array}{c} $
4	BT	DC 0 to 6V (Supplied from Outside)	External battery connection pin. Connect the 3 to 6V battery to GND. Connect to GND directly when the BT function is not used.	
5	SEND OUTPUT SEND DRIVER	0.3V	Transmitter output. Transmitter gain control pin. Controls the gain and frequency charac- teristic of the transmitter system with external C and R.	Vref V_L $65.3k\Omega$ V_{cc} m 6
7	1/2V _L		Automatic pad control pin. Capable of controlling the pad operating point with the external resistor.	7 ¥ 20kΩ 47kΩ # #

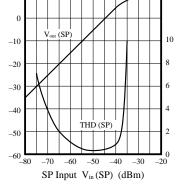
'in No.	Pin name	Typical waveform	Description	Equivalent circuit
8	Mute	W/o External Capafitor UC W/External Capafitor	Noise precentice peak hold pin. Connect to GND via 10µF.	
9 10 11	LPF (1) LPF (2) LPF (3)	$\overset{\scriptstyle <}{\overset{\scriptstyle <}{\overset{\scriptstyle <}{\overset{\scriptstyle <}}}}$	Transmitter filter pin. Constitutes the tertiary active filter with the external parts C and R, and capable of controlling the high-pass transmitter fre- quency characteristic.	9 V_{cc} m $40k\Omega$
12	MIC input		Microphone input pin. Input pin for the microphone.	12 V _{cc} V _{cc} 10kΩ
13	НС	Hole Tone Mode	HOLD TONE control pin. The HOLD TONE transmission mode is set by setting this pin to Low.	V _{cc} V _{cc} 10kΩ 10kΩ 10kΩ
14	DMC	DTMF Transmission Mode	DIAL MUTE control pin. The DTMF transmission mode is set by setting this pin to Low.	V _{cc} V _{cc} 10kΩ 10kΩ
15	SPC	Speaker Mode	SPEAKER control pin. The speaker mode is set by setting this pin to Low.	
16	TT input		DTMT signal input pin. Inputs a DTMF signal. A signal is sent to the circuit when the Pin14 is at Low.	V _{cc} V _{ref} 10 ππ

n No.	Pin name	Typical waveform	Description	Equivalent circuit
17	KT/HT input DVR input	KT/HT 1V 1V 0V Digital VR ON	KT/HT signal input pin, Digital VR ON Pin. Inputs a KEY IN TONE or HOLD TONE signal. If the Pin14 is set to Low, the KT signal is output to the receiver, and if the Pin13 is set to Low, the HT signal is output to the curcuit and speak- er. The receiver gain is improved 6dB by setting this pin to Low instantaneous- ly.	V_{CC} V
18	REC input		Receiver signal input pin. Inputs a receiver signal from the side tone preventive circuit network.	18 V _{cc} Vref
19 20	REC NFB REC output		Receiver gain control pin, Receiver signal output pin. Capable of controlling the frequency characteristic and gain of the receiver system with the external parts C and F of the Pins19 and 20. The receiver sig- nal/HOLD TONE signal/KEY IN TONE signal is output to the Pin20 by the HC/DMC/SPC control.	
21 22 23	Driver input Driver output (1) Driver output (2)		Receiver amplifier signal input pin, Receiver output (1) pin, Receiver output (2) pin. Inputs a receiver signal from the Pin20 to the Pin21. BTL output at the Pins20 and 23.	v_{cc} v
24	SP input		Speaker amplifier signal input pin. Inputs a receiver signal from the Pin20.	(24)

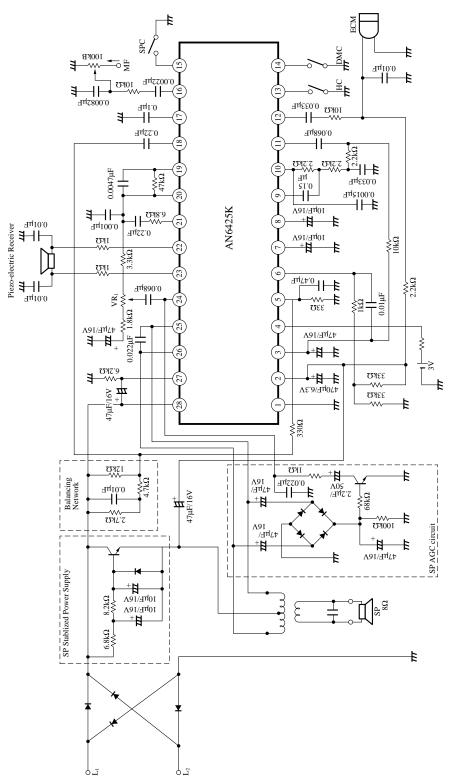
Pin I Pin No.	Pin name	Typical waveform	Equivalent circuit		
25 26	SP out (1) SP out (2)		Description Speaker output (1) pin, Speaker output (1) pin. Output of the class-A differential ampli- fier and connected to the speaker through the transformer (300Ω) with intermediate tap.		
27	BS	DC 1 to 8V	Power supply boot strap pin. Connects to the Pin28 via 47µF. The DC resistance of the communication cir- cuit is determined by connecting an external resistor to GND.	(27)	
28	VL	3 to 10V	Supply current input pin. Connects to the + output of the diode bridge.		


■ Supplementary Descriptions

• Electrical Characteristics Design Reference Values (Ta=25°C)


Parameter	Symbol	Condition	min	typ	max	Unit
KEY IN TONE gain	G _{V (KEY)}	Measure the output between the Pin22 and 23 when key input (Pin17)=-40dBm.		40		dB
Δ Transmitter noise preventive attenuation	MUTE (SEND)	To the Pin8 – GND		-14		dB
Δ Transmitter noise preventive selector level	MUTE (MIC)	REC output $\Delta -1$ dB		-62		dBm
Low impedance drive	R _L (REC)	R (REC)=130Ω, Input=-50dBm		35		dB
DC resistance (1)	R _{DC (1)}	With I_L =20mA, measure the DC voltage at the Pin28 when connecting 6.2k Ω between the Pins27 and 1.		3.8		v
DC resistance (2)	R _{DC (2)}	With I_L =100mA, measure the DC voltage at the Pin28 when connecting 6.2k Ω between the Pins27 and 1.		10		v
AC impedance (1)	Z _{AC (1)}	Measure the AC impedance between the Pins28 and 1 at I_L =20mA.		2		kΩ
AC impedance (2)	Z _{AC (2)}	Measure the AC impedance between the Pins28 and 1 at I_L =100mA.		1.5		kΩ
Internal regulator voltage	V _{REG}	Measure the DC voltage at the Pin2 at $I_L=30$ mA.		2		v
Internal reference voltage	V _{REF}	Measure the DC voltage at the Pin3 at $I_L=20$ mA.		1		v

Note) The above characteristics are design reference values and not guaranteed values.


Characteristics Curve

Touch Tone Input $V_{in}(TT)$ (dBm)

Application Circuit

