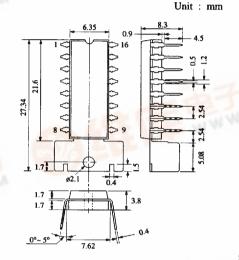
WWW.DZSC.

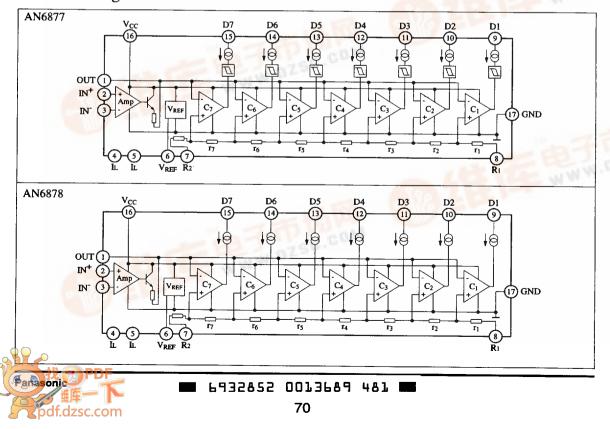
7-Dot LED Driver Circuits


AN6877, AN6877供应商

Description

The AN6877 and AN6878 are monolithic integrated circuits driving 7-LEDs. The AN6877 respond linearly and the AN6878 does logarithmically for input signal. As output current adjusting pin is set, it can control LED brightness.

Features


- 7-LED bar graph display drive
- Linear (AN6877) and Logarithm (AN6878) response
- Brightness externally adjustable
- High output current: 25mA max.
- Series connection available for driving more than 7-dot display
- Incorporating reference supply voltage circuit
- No fluctuation of LED current even if supply voltage changes
- Snap turning on available

加急出货

捷多邦,专业PCB打样工厂,24小时

16-Lead DIL Plastic Package with Fin (16-DIP-F)

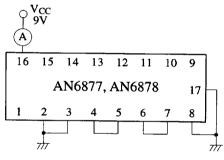
Block Diagram

Symbol Unit Rating Item v 18 V_{CC} Supply Voltage V_1 v 7.5 **Circuit Voltage** Voltage 16 v V_{12,3} Input Voltage v 16 Output Voltage V₀₉₋₁₅ mΑ I_{CC} 25 Supply Current Current 25 mΑ I_O **Output Current** mW P_D 1.800* Power Dissipation (Ta = 25° C) °C -30 ~ +75 Topr **Operating Ambient Temperature** °C -55 ~ +150 Tstg Storage Temperature

Absolute Maximum Ratings (Ta=25°C)

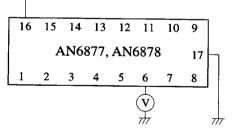
* Value of no radiating fin. Refer P_D - Ta characteristics curve for radiating fin design. Operating Supply Voltage Range: $V_{CC} = 5.0V \sim 16.0V$

■ Electrical Characteristics (V_{CC}=9V, Ta=25°C)

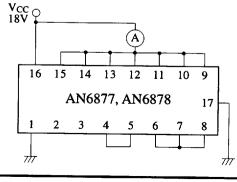

Item	Symbol	Test Circuit	Condition	min.	typ.	max.	Unit
Supply Current	I _{CC}	1	V ₂ =V ₃ =0V	4		18	mA
Output Inflow Current	lo 9-15	2	V ₁ =3.55V, V ₇ =3.5V	13		25	mA
Reference Voltage	VREF	3		3.55	3.75	3.95	v
Output Offset Voltage (Amp.)	V ₁	4	$V_{CC}=16V, G_V=20dB, V_2=0V$	-150		150	mV
Voltage Gain (Amp.)	VG	4	V ₂ =50mV	18	20	22	dB
Output Pin Leak Current	I9-15	5	V _{CC} =18V	0		20	μA
	I _{Bias2}	6	$V_{CC}=18V, V_2=V_3=0V$	-2		0	μΑ
Input Bias Current (Amp.)	I _{Bias3}	6	$V_{CC}=18V, V_2=V_3=0V$	-2		0	μA
Input Bias Current	I _{Bias7}	7	$V_{CC}=18V, V_2=10V, V_3=V_7=V_8=0V$	-10		0	μA
(Comparator)	IBias1	7	$V_{CC}=18V, V_3=10V, V_1=V_2=0V, V_6=V_7=V_8$	-10		0	μA
	GD ₁			0.4	0.5	0.6	V V
	GD ₂	1		0.85	1	1.15	
	GD ₃			1.35	1.5	1.65	v
Comparator Level (AN6877)	GD4	8	V ₇ =3.65V, V ₈ =0V	1.85	2	2.15	v
	GD5	1		2.35	2.5	2.65	v
	GD ₆	1		2.85	3	3.15	v
	GD ₇			3.35	3.5	3.65	v
	GD1*	-		-17	-15	-13	dB
	GD ₂			-9	-7	-5	dB
	GD ₃			-4	-3	-2	dB
Comparator Level (AN6878)	GD ₄	8	V ₇ =3.5V, V ₈ =0V	-1	0	0 1 dI	dB
	GD5			1.5	2	2.5	dB
	GD ₆			3.5	4	4.5	dB
	GD ₀	-		4.5	5	5.5	dB

* Comparator reference voltage = 3.5V, 2.0V= 0dB.

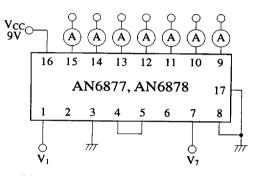
🖿 Pin

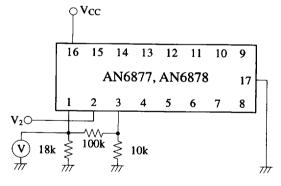

Pin No. Pin Name		Pin No.	Pin Name	
1	Amp. Output	9	LED 1 Output	
2	Non Inverting Input	10	LED 2 Output	
3	Inverting Input	11	LED 3 Output	
4	LED Current Setting Input	12	LED 4 Output	
5	LED Current Setting Input	13	LED 5 Output	
6	Reference Voltage	14	LED 6 Output	
7	LED ON Level Setting Input	15	LED 7 Output	
8	LED ON Level Setting Input	16	Vcc	

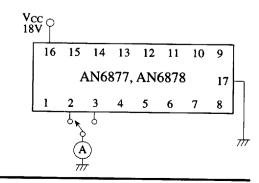
Test Circuit 1 (Icc)



Test Circuit 3 (V_{REF})

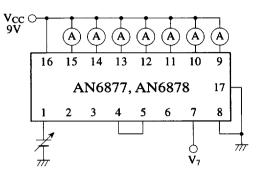

 $\begin{array}{c} V_{CC} \\ 9V \end{array}$


Test Circuit 5 (I₉₋₁₅)

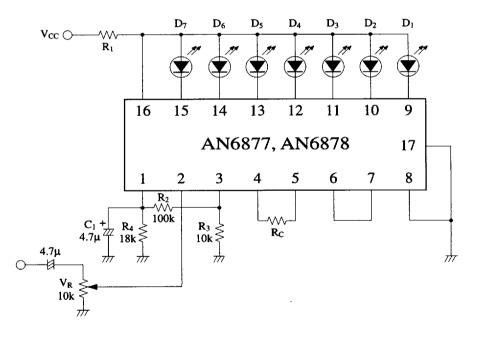

Test Circuit 2 (I_{O 9-15})

Test Circuit 4 (V₁, V_G)

Test Circuit 6 (IBias2, IBias3)



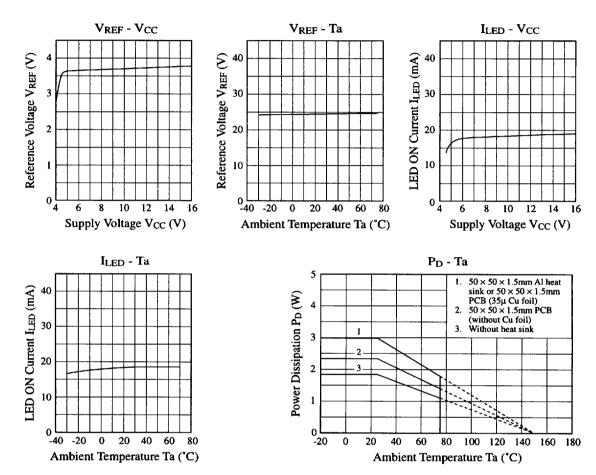
6932852 OO13691 O3T 🔳


Test Circuit 7 (IBias7, IBias1)

16 15 14 13 12 11 10 9 AN6877, AN6878 17 8 1 2 3 4 5 6 7 () V2) V6 Ó V7

Test Circuit 8 (GD₁₋₇)

Application Circuit



- For input amp. gain determination : R₂, R₃
- LED current adjusting resistor : R_C $R_C = 300\Omega$ I_{LED} = 18mA

 $R_{C} = 3.3k\Omega I_{LED} = 5mA$

- Determine by using $[P_D Ta]$ characteristics data about power supply R_1
- For response time determination : C1, C4
- For input level determination : V_R

Characteristics Curve

L 6932852 0013693 902 🖿