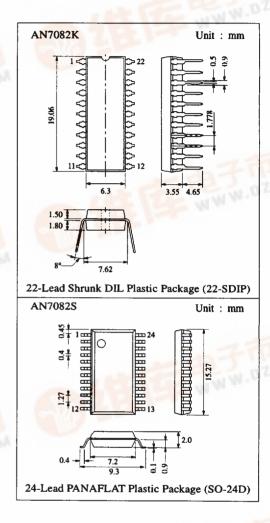
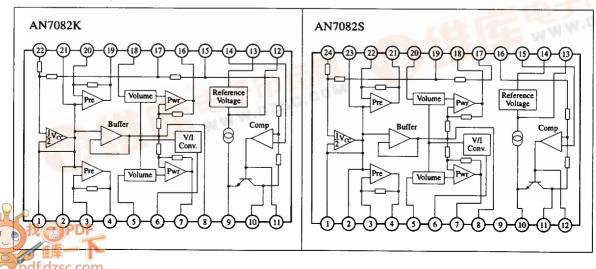
AN7082K/S


Pre/Power Amplifier, Governor Single Chip IC for 3V Headphone Stereo

Description


The AN7082K/S are the monolithic integrated circuits most suitable for stereo headphone cassette player with integrated pre-amp., power amp., motor governor into a single chip and built-in electronic VR.

■ Features

- Wide operating supply voltage range: V_{cc(opr)} = 1.8V ~ 6V
- Fewer peripheral parts
- Both channel VR control by single string VR is possible due to electronic VR built-in
- Available for graphic equalizer

■ Block Diagram

■ Absolute Maximum Ratings (Ta=25°C)

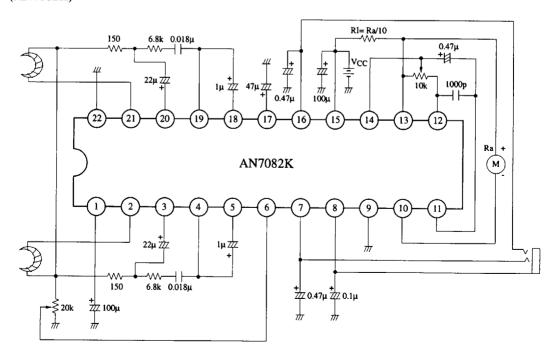
Item	Symbol	Rating	Unit
Supply Voltage	V _{cc}	7	V
Supply Current	Icc	1000	mA
Power Dissipation	P _D	1000	mW
Operating Ambient Temperature	Topr	-25 ~ +75	°C
Storage Temperature	Tstg	-55 ~ +150	°C

Operating Supply Voltage Range: $V_{CC} = 1.8V \sim 6.0V$

■ Electrical Characteristics (Ta=25°C, V_{CC}=3V, f=1kHz, R_L=32Ω, Volume Max.)

Item	Symbol	Condition	min.	typ.	max.	Unit
Quiescent Current	I_{CQ}	$V_{in} = 0V, I_m = 0mA$	10	20	35	mA
Pre Amplifier						
Close Loop Gain	Gvc	$V_0 = 0.3V$	34	37.5	40	dB
Maximum Output Voltage	V _{O(max)}	THD = 1%	0.6	0.8		V
Total Harmonic Distortion	THD	$V_O = 300 \text{mV}$		0.05	0.5	%
Input Noise Voltage	V _{ni}	$V_{in} = 0V$, $R_g = 2.2k\Omega$, BPF (300Hz ~ 20kHz)		1.8	5.0	μV
Channel Balance	СВ	$V_{in} = 5mV$	-2	0	+2	dB
Attenuator						
Maximum Attenuation	V _{a(max)}	$V_0 = 0.4V$, Pin 6 = 0	60	65		dB
Power Amplifier						
Voltage Gain	Gv	$P_{out} = 5mW$	25.5	28	30.5	dB
Maximum Power	Po	THD = 10%, $R_L = 32\Omega$	15	20		mW
Total Harmonic Distortion	THD	$P_{out} = 5mW$		0.2	1.0	%
Channel Balance	СВ	$V_0 = 0.4V$	-2	0	+2	dB
Output Noise Voltage	V _{no}	BPF (300Hz ~ 20kHz)		0.3	0.4	mV
Ripple Rejection	RR	f = 100Hz, 50mV	34	40		dB
Crosstalk	CT	$V_O = 0.6V$	25	35		dB
Motor Governor						
Load Regulation 1	$\frac{\Delta V_a}{V_a}/\Delta I_a$	$I_{10} = 30 \text{mA} \sim 200 \text{mA}$		0.01	0.1	%/mA
Line Regulation 1	$\frac{\Delta V_a}{V_a}/\Delta V_{CC}$	$I_{\rm m} = 50 {\rm mA}, V_{\rm CC} = 1.8 \sim 6.0 {\rm V}$		0.1	1.0	%/V
Reference Voltage	V _{REF}	$I_{\rm m} = 100 {\rm mA}, R_{13-12} > 10 {\rm k}\Omega$		1.28		V
Saturation Voltage	V _{sat}	$I_{\rm m} = 100 {\rm mA}, 1.8 {\rm V}, R_{\rm a} = 4.7 \Omega$		0.2		V
Line Regulation 2	$\frac{\Delta V_{REF}}{V_{REF}} \Delta V_{CC}$	$I_{\rm m} = 50 \text{mA}, V_{\rm CC} = 1.8 \sim 6.0 \text{V}$		0.2		%/V
Temperature Characteristics	$\frac{\Delta V_a}{V_a}/\Delta T_a$	$T_a = -25^{\circ}C \sim +75^{\circ}C$		0.01		%/°C

AN7082K/S

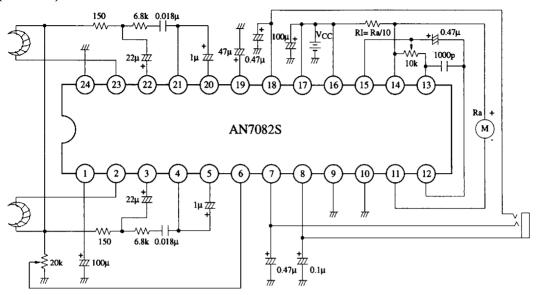

■ Pin

Pin No.	Pin Name	Pin No.	Pin Name		
1(1)	Pre-V _{REF}	13 (12)	Motor Ref. Voltage (-)		
2(2)	Channel 1 Pre Amp. Input	14 (13)	Motor Ref. Voltage (+)		
3(3)	Channel 1 Pre Negative Feedback	15 (14)	Comparator Input		
4(4)	Channel 1 Pre Amp. Output	16	Motor V _{CC}		
5(5)	Channel 1 Volume Input	17 (15)	Power V _{CC}		
6(6)	Volume Control	18 (16)	Channel 2 Power Amp. Output		
7(7)	Channel 1 Power Amp. Output	19 (17)	Ripple Filter		
8(8)	Buffer Output	20 (18)	Channel 2 Volume Input		
9(9)	Power GND	21 (19)	Channel 2 Pre Amp. Output		
10	Motor GND	22 (20)	Channel 2 Pre Negative Feedback		
11 (10)	Motor Terminal (-)	23 (21)	Channel 2 Pre Amp. Input		
12 (11)	Phase Compensation	24 (22)	Pre GND		

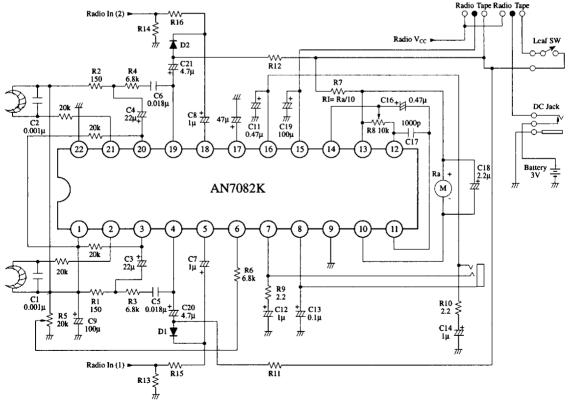
Note: The pin numbers in the parenthesis are for AN7082K

■ Application Circuit

(AN7082K)



Panasonic


SW1-a

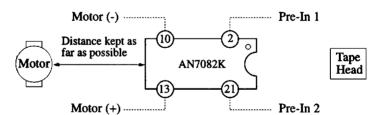
SW1-b

Application Circuit (Continue) (AN7082S)

■ AN7082K Radio Application Circuit

Note: Resistors R11/R12 and diodes D1/D2 are used to mute pre-amp during radio mode. Resistor R13/R14 act as multiplexer load.

Resistors R15/R16 are used to achieve same output level during radio/playback mode.


Application Notes

1. Tuner Connection

- a) AN7082K can be combined with any tuner IC to form 2-chip Headphone stereo player. This is possible by adding 2 resistors, R11/R12 & 2 diodes, D1/D2 to function as Pre-amp Mute circuit during Radio operation.
- b) During Tape playback mode R11/R12 & D1/D2 are being DC biased through Tape V_{CC}, such that the Tape signal from Pre-amp output can pass through & be amplified by the subsequent power stage.
- c) During Radio Mode, V_{CC} supply to R11/R12 & D1/D2 is cut off, causing D1/D2 to be inoperative. As such, any Pre-amp output signals from tape will be blocked by the diodes and will not contribute to radio noise.
- d) Values of R11/R12 are selected to be equal to that of Tuner MPX load. Values of R13/R14 are adjusted to achieve same output power level during tape playback & radio modes.

2. Motor Hum Noise

- To reduce output noise, add C7/C8 1000p between Pre NF pins & Pre-Out pins on both channels respectively.
- b) Where practical, the distance between Motor and AN7082K on PCB should be kept as far as possible, especially the orientation of Pre-amp input pins. This is to reduce Motor Hum Noise feedback through to AN7082K/S inputs.

- c) The PCB layout tracks from pin 10 and pin 13 to Motor(-) and Motor(+) terminals should also be maintained as far as possible from Pre-amp inputs pins to reduce motor interference.
- d) The motor assembly is preferably covered by some metal shield to reduce noise radiation of the unit.