

ARF1502

65V 1500W 40MHz

RF POWER MOSFET

N-CHANNEL ENHANCEMENT MODE

The ARF1500 is an RF power transistor designed for class C/E operation in very high power scientific, commercial, medical and industrial RF power generator and amplifier applications up to 40 MHz.

• Specified 65 Volt, 27.12 MHz Characteristics:

Output Power = 900 Watts.

Gain = 17dB (Class C)

Efficiency > 75%

• High Performance Power RF Package.

• Very High Breakdown for Improved Ruggedness.

• Low Thermal Resistance.

• Nitride Passivated Die for Improved Reliability.

MAXIMUM RATINGS

All Ratings: $T_C = 25^\circ\text{C}$ unless otherwise specified.

Symbol	Parameter	ARF 1500	UNIT
V_{DSS}	Drain-Source Voltage	200	Volts
V_{DGO}	Drain-Gate Voltage	200	
I_D	Continuous Drain Current @ $T_C = 25^\circ\text{C}$	70	Amps
V_{GS}	Gate-Source Voltage	± 30	Volts
P_D	Total Device Dissipation @ $T_C = 25^\circ\text{C}$	1500	Watts
T_J, T_{STG}	Operating and Storage Junction Temperature Range	-55 to 200	
T_L	Lead Temperature: 0.063" from Case for 10 Sec.	300	$^\circ\text{C}$

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
BV_{DSS}	Drain-Source Breakdown Voltage ($V_{GS} = 0\text{V}$, $I_D = 250\text{\mu A}$)	200			Volts
$V_{DS(ON)}$	On State Drain Voltage ($I_{D(ON)} = 35\text{A}$, $V_{GS} = 10\text{V}$)			4.0	
I_{DSS}	Zero Gate Voltage Drain Current ($V_{DS} = V_{DSS}$, $V_{GS} = 0\text{V}$)			100	μA
	Zero Gate Voltage Drain Current ($V_{DS} = 0.8 V_{DSS}$, $V_{GS} = 0\text{V}$, $T_C = 125^\circ\text{C}$)			1000	
I_{GSS}	Gate-Source Leakage Current ($V_{GS} = \pm 30\text{V}$, $V_{DS} = 0\text{V}$)			± 400	nA
g_{fs}	Forward Transconductance ($V_{DS} = 25\text{V}$, $I_D = 35\text{A}$)	8	11		mhos
$V_{isolation}$	RMS Voltage (60Hz Sinewave from terminals to mounting surface for 1 minute)	2500			Volts
$V_{GS(TH)}$	Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_D = 50\text{mA}$)	3		5	Volts

THERMAL CHARACTERISTICS

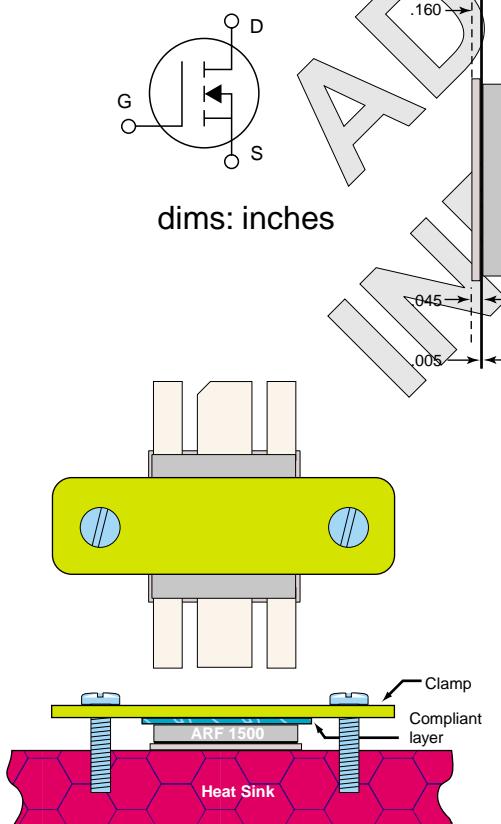
Symbol	Characteristic (per package unless otherwise noted)	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction to Case			0.12	$^\circ\text{C/W}$
$R_{\theta CS}$	Case to Sink (Use High Efficiency Thermal Joint Compound and Planar Heat Sink Surface.)		0.09		

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

APT Website - <http://www.advancedpower.com>

DYNAMIC CHARACTERISTICS

ARF1502


Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C_{iss}	Input Capacitance	$V_{GS} = 0V$ $V_{DS} = 50V$ $f = 1\text{ MHz}$		4820	6000	pF
C_{oss}	Output Capacitance			800	1100	
C_{rss}	Reverse Transfer Capacitance			210	290	
$t_{d(on)}$	Turn-on Delay Time	$V_{GS} = 15V$ $V_{DD} = 0.5V_{DSS}$ $I_D = I_{D[\text{Cont.}]} @ 25^\circ\text{C}$ $R_G = 1.6\Omega$		5	10	ns
t_r	Rise Time			3.0	7	
$t_{d(off)}$	Turn-off Delay Time			15	25	
t_f	Fall Time			3	7	

FUNCTIONAL CHARACTERISTICS

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
G_{PS}	Common Source Amplifier Power Gain	$f = 27, 12\text{ MHz}$ $V_{GS} = 0V$ $V_{DD} = 65V$ $P_{out} = 900W$	15	17		dB
η	Drain Efficiency		70	75		%
ψ	Electrical Ruggedness VSWR 10:1		No Degradation in Output Power			

① Pulse Test: Pulse width < 380 μS , Duty Cycle < 2%.

APT Reserves the right to change, without notice, the specifications and information contained herein.

HAZARDOUS MATERIAL WARNING

The ceramic portion of the device between leads and mounting surface is beryllium oxide. Beryllium oxide dust is highly toxic when inhaled. Care must be taken during handling and mounting to avoid damage to this area. These devices must never be thrown away with general industrial or domestic waste.

Thermal Considerations and Package Mounting:

The rated 1500W power dissipation is only available when the package mounting surface is at 25°C and the junction temperature is 200°C . The thermal resistance between junctions and case mounting surface is $0.12\text{ }^\circ\text{C/W}$. When installed, an additional thermal impedance of $0.09\text{ }^\circ\text{C/W}$ between the package base and the mounting surface is typical. Insure that the mounting surface is smooth and flat. Thermal joint compound must be used to reduce the effects of small surface irregularities. The heat sink should incorporate a copper heat spreader to obtain best results.

The package is designed to be clamped to a heatsink. A clamped joint maintains the required mounting pressure while allowing for thermal expansion of both the device and the heat sink. A simple clamp, a compliant layer of plastic or rubber, and two 6-32 (M3.5) screws can provide the minimum 85 lb required mounting force. $T = 6\text{ in-lb}$.