AS1702, AS1703, AS1704, AS1705 1.6W Single-Channel Audio Power Amplifiers

Data Sheet

General Description

The AS1702, AS1703, AS1704, and AS1705 are singlechannel differential audio power-amplifiers designed to drive 4 and 8Ω loads. The integrated gain circuitry of these amplifiers and their small size make them ideal for 2.7- to 5V-powered portable audio devices.

The differential input design improves noise rejection and provides common-mode rejection. A bridge-tied load (BTL) design minimizes external component count, while providing Hi-Fi audio power amplification.

The devices deliver 1.6W continuous average power per channel to a 4Ω load with less than 1% total harmonic distortion (plus noise), while operating from a single 2.7 to 5V supply.

In order to facilitate reduced component designs, the devices are available with different gain levels:

- AS1702 Adjustable Gain (via external components)
- AS1703 AV = 0dB
- AS1704 AV = 3dB
- AS1705 Av = 6dB

Integrated shutdown circuitry disables the bias generator and amplifiers, and reduces quiescent current consumption to less than 100nA. The shutdown input can be set as active-high or active-low. All devices contain comprehensive click-and-pop suppression circuitry that reduces audible clicks and pops during power-up and shutdown.

The AS1702, AS1703, AS1704, and AS1705 are pin compatible with the LM4895 and the MAX9718A/B/C/D.

The devices are available in a 10-pin MSOP package.

SHDN

SHDM

Figure 1. Simplified Block Diagram Single Supply 2.7 to 5.5V RL= 4 or 8Ω OUT

AS1702, AS1703,

AS1704, AS1705

2 Key Features

- 2.7 to 5.5V (Vcc) Single-Supply Operation
- THD+N: 1.6W into 4Ω at 1% (per Channel)
- Differential Input
- Adjustable Gain Option (AS1702)
- Internal Fixed Gain to Reduce External Component Count (AS1703, AS1704, AS1705)
- <100nA Low-Power Shutdown Mode</p>
- Click and Pop Suppression
- Pin-Compatible National Semiconductor LM4895 (AS1705) and Maxim MAX9718A/B/C/D
- Operating Temperature Range: -40 to +85°C
- Low-Cost MSOP-10 Package

3 Applications

The devices are ideal as audio front-ends for battery powered audio devices such as MP3 and CD players, mobile phones, PDAs, portable DVD players, and any other hand-held battery-powered device.

4 Absolute Maximum Ratings

Stresses beyond those listed in Table 1 may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in Section 5 Electrical Characteristics on page 3 is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 1. Absolute Maximum Ratings

Parameter	Min	Max	Unit	Comments
Supply Voltage (Vcc to GND)	-0.3	+7	V	
Any Other Pin to GND	-0.3	Vcc + 0.3	V	
Input Current (Latchup Immunity)	-100	100	mA	JEDEC 17
Continuous Power Dissipation (TAMB = +70°C)		TBD	mW	MSOP-10 (Derate 10.3mW/°C above +70°C)
Electro-Static Discharge (ESD)		1	kV	Human Body Model and MIL- Std883E 3015.7methods
Operating Temperature Range (TAMB)	-40	+85	°C	
Storage Temperature Range	-65	+150	°C	
Package Body Temperature		260	°C	

Data Sheet 5V Operation

5 Electrical Characteristics

5.1 5V Operation

Vcc = 5V, GND = 0V, SHDN = Vcc, SHDM = GND, $Rin = RF = 10k\Omega$ (AS1702), $TAMB = +25^{\circ}C$, $CBIAS = 0.1\mu F$, no load. Typical values are at $TAMB = +25^{\circ}C$ (unless otherwise specified). All specifications are 100% tested at $TAMB = +25^{\circ}C$ (unless otherwise specified). Specifications over temperature (TAMB = TMIN to TMAX) are guaranteed by design, not production tested.

Table 2. Electrical Characteristics - 5V Supply

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Vcc	Supply Voltage			2.7		5.5	V
Icc	Supply Current ¹	VIN- = VIN+ TAMB = -40 to +85			8	10.4	mA
Ishdn	Shutdown Supply	SHDN = SHDM = 0	GND per amplifier		0.05	1	μΑ
ViH	SHDN, SHDM			0.7 x Vcc			V
VIL	Threshold					0.3 x Vcc	V
VBIAS	Common-Mode Bias Voltage ²			Vcc/2 - 5%	Vcc/2	Vcc/2 + 5%	٧
			Av = 0dB (AS1703)		±1	±10	
Vos	Output Offset Voltage	VIN- = VIN+ = VBIAS	Av = 3dB (AS1704)		±1	±15	mV
			Av = 6dB (AS1705)		±1	±20	
			Av = 0dB (AS1703)	0.5		Vcc - 0.5	
Vic	Common-Mode Input	Inferred from CMRR Test	Av = 3dB (AS1704)	0.5		Vcc - 0.6	V
VIC	Voltage	1001	Av = 6dB (AS1705)	0.5		Vcc - 0.8	V
		External Ga	in AS1702	0.5		Vcc - 1.2	
Rın	Input Impedance	AS1703, AS1704, AS1705		10	15	20	kΩ
CMRR	Common-Mode			-50	-60		dB
CIVINN	Rejection Ration	fN = 1	fn = 1kHz		-64		uĎ
	Power Supply	VIN- = VIN+ = VBIAS;	f = 217Hz		-79		
PSRR	Rejection Ratio	VRIPPLE = 200mVp-p ; RL = 8Ω ; CBIAS = $1 \mu \text{F}$	f = 1kHz		-73		dB
Роит	Output Power 3	THD+N = 1%;	$RL = 8\Omega$	0.8	1.2		W
1 001	Output 1 Owor 4	fin = 1kHz	$RL = 4\Omega$		1.6		• •
THD+N	Total Harmonic	$RL = 4\Omega$, fin = 1kHz, Pout = 1.28W, $Vcc = 5V$, $AV = 6dB$			0.06		%
THEFIN	Distortion plus Noise 4	$RL = 8\Omega$, fin = 1kH VCC = 5V,			0.03		
	Gain Accuracy	AS1703, AS1704, AS1705			±1	±2	%
	Thermal Shutdown Threshold				+145		°C
	Thermal Shutdown Hysteresis				9		°C
CLOAD	Maximum Capacitive Drive	Bridge-tied capacitance			500		pF
tPU	Power-up/Enable from Shutdown Time				125		ms
tshdn	Shutdown Time				3.5		μs
VPOP	Turn-Off Transient 5				50		mV

- 1. Quiescent power supply current is specified and tested with no load. Quiescent power supply current depends on the offset voltage when a practical load is connected to the amplifier. Guaranteed by design.
- 2. Common-mode bias voltage is the voltage on BIAS and is nominally Vcc/2.
- 3. Output power is specified by a combination of a functional output current test and characterization analysis.
- 4. Measurement bandwidth for THD+N is 22Hz to 22kHz.
- 5. Peak voltage measured at power-on, power-off, into or out of SHDN. Bandwidth defined by A-weighted filters, inputs at AC GND. Vcc rise and fall times ≥ 1ms.

Data Sheet 3V Operation

5.2 3V Operation

VCC = 3V, GND = 0V, SHDN = VCC, SHDM = GND, $RIN = RF = 10k\Omega$ (AS1702), $TAMB = +25^{\circ}C$, $CBIAS = 0.1\mu F$, no load. Typical values are at $TAMB = +25^{\circ}C$ (unless otherwise specified.) All specifications are 100% tested at $TAMB = +25^{\circ}C$. Specifications over temperature (TAMB = TMIN to TMAX) are guaranteed by design, not production tested.

Table 3. Electrical Characteristics – 3V Supply

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Icc	Supply Current ¹	VIN- = VIN+ = VBIAS; TAMB = -40 to +85°C, per amplifier			7.5		mA
ISHDN	Shutdown Supply	SHDN = SHDM = 0	GND per amplifier		0.05	1	μΑ
VIH	SHDN, SHDM			0.7 x Vcc			V
VIL	Threshold					0.3 x Vcc	V
VBIAS	Common-Mode Bias Voltage ²			Vcc/2 - 5%	Vcc/2	Vcc/2 + 5%	٧
	0 0" .		Av = 0dB (AS1703)		±1	±10	mV
Vos	Output Offset Voltage	VIN- = VIN+ = VBIAS	Av = 3dB (AS1704)		±1	±15	
	Tomago		Av = 6dB (AS1705)		±1	±20	
			Av = 0dB (AS1703)	0.5		Vcc - 0.7	
Vic	Common-Mode	Inferred from CMRR Test	Av = 3dB (AS1704)	0.5		Vcc - 0.8	mV
VIC	Input Voltage	1001	Av = 6dB (AS1705)	0.5		Vcc - 1.0	IIIV
		External gai	External gain AS1702			Vcc - 1.2	
Rin	Input Impedance	AS1703, AS1704, AS1705		10	15	20	kΩ
CMDD	Common-Mode			-50	-60		٩D
CMRR	Rejection Ration	fN = 1	kHz		-64		dB
	Power Supply	VIN- = VIN+ = VBIAS;	f = 217Hz		-79		,_
PSRR	Rejection Ratio	VRIPPLE = 200mVp-p ; RL = 8Ω ; CBIAS = $1 \mu\text{F}$	f = 1kHz		-73		dB
Роит	Output Power ³	RL = 4Ω , THD+N = 1%; fin = 1kHz			590		mW
POUT	Output Power 9	$RL = 8\Omega, THD+N =$	= 1%; fin = 1kHz		430		IIIVV
	Total Harmonic	$RL = 4\Omega$, fin = 1kHz, Pou	T = 460mW, $AV = 6$ dB		0.06		
THD+N	Distortion plus Noise ⁴	$RL = 8\Omega$, $fIN = 1kHz$, POL	T = 330mW, Av = 6dB		0.04		%
	Gain Accuracy	AS1703, AS17	704, AS1705		±1	±2	%
	Thermal Shutdown Threshold				+145		°C
	Thermal Shutdown Hysteresis				9		°C
CLOAD	Maximum Capacitive Drive	Bridge-tied capacitance			500		pF
tpu	Power-up/Enable from Shutdown Time				125		ms
tshdn	Shutdown Time				3.5		μs
VPOP	Turn-Off Transient 5				50		mV

- 1. Quiescent power supply current is specified and tested with no load. Quiescent power supply current depends on the offset voltage when a practical load is connected to the amplifier. Guaranteed by design.
- 2. Common-mode bias voltage is the voltage on BIAS and is nominally Vcc/2.
- 3. Output power is specified by a combination of a functional output current test and characterization analysis.
- 4. Measurement bandwidth for THD+N is 22Hz to 22kHz.
- 5. Peak voltage measured at power-on, power-off, into or out of SHDN. Bandwidth defined by A-weighted filters, inputs at AC GND. Vcc rise and fall times ≥ 1ms.

Data Sheet Bias

6 Detailed Description

The AS1702, AS1703, AS1704, and AS1705 are 1.6W high output-current audio amplifiers (configured as BTL amplifiers), and contain integrated low-power shutdown and click- and pop-suppression circuitry. Two inputs (SHDM and SHDN) allow shutdown mode to be configured as active-high or active-low (see Section 6.2 Shutdown Mode on page 5).

Each device has either adjustable or fixed gains (0dB, 3dB, 6dB) (see Section 9 Ordering Information on page 12).

6.1 Bias

The devices operate from a single 2.7 to 5.5V supply and contain an internally generated, common-mode bias voltage of:

$$Vcc/2$$
 (EQ 1)

referenced to ground. Bias provides click-and-pop suppression and sets the DC bias level for the audio outputs. Select the value of the bias bypass capacitor as described in Section 7.4.3 BIAS Capacitor on page 9.

Note: Do not connect external loads to BIAS as this can adversely affect overall device performance.

6.2 Shutdown Mode

All devices implement a 100nA, low-power shutdown circuit which reduces quiescent current consumption. As shut-down mode commences, the bias circuitry is automatically disabled, the device outputs go high impedance, and bias is driven to GND.

The SHDM input controls the polarity of SHDN:

- Drive SHDM high for an active-low SHDN input.
- Drive SHDM low for an active-high SHDN input.

Table 4. Shutdown Mode Selection Configurations

SHDM	SHDN	Mode
0	0	Shutdown Mode Enabled
0	1	Normal Operation Enabled
1	0	Normal Operation Enabled
1	1	Shutdown Mode Enabled

6.3 Click-and-Pop Suppression

During power-up, the device common-mode bias voltage (VBIAS (page 3)) ramps to the DC bias point. When entering shutdown, the device outputs are driven high impedance to $100k\Omega$ between both outputs minimizing the energy present in the audio band, thus preventing clicks and pops.

7 Application Information

Figure 2. AS1702 Typical Application Diagram

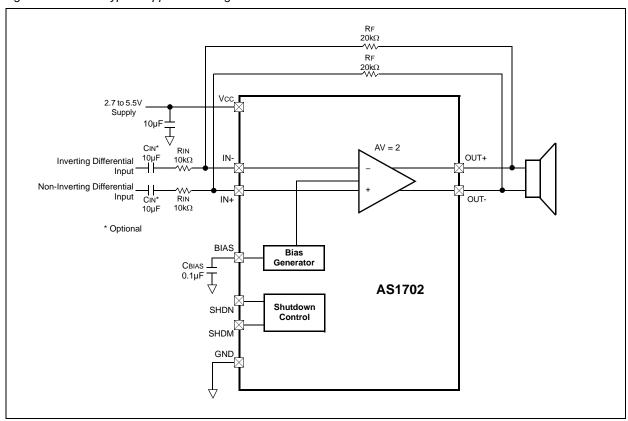
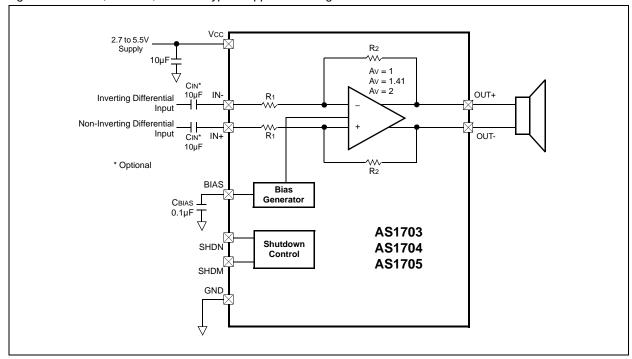
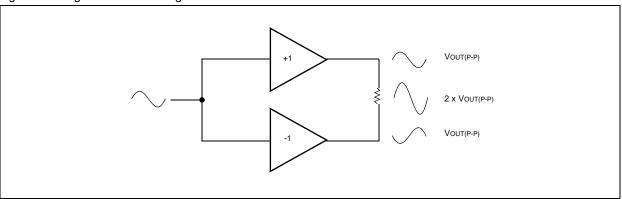



Figure 3. AS1703, AS1704, AS1705 Typical Application Diagram



Data Sheet BTL Amplifier

7.1 BTL Amplifier

All devices are designed to drive loads differentially in a bridge-tied load (BTL) configuration.

Figure 4. Bridge Tied Load Configuration

The BTL configuration doubles the output voltage (illustrated in Figure 4) compared to a single-ended amplifier under similar conditions. Thus, the differential gain of the device (AVD) is twice the closed-loop gain of the input amplifier. The effective gain is given by:

$$AVD = 2 \times \frac{RF}{RIN}$$
 (EQ 2)

Substituting 2 x VOUT(P-P) for VOUT(P-P) into (EQ 3) and (EQ 4) yields four times the output power due to doubling of the output voltage:

$$V_{RMS} = \frac{V_{OUT(P-P)}}{2\sqrt{2}}$$
 (EQ 3)

$$POUT = \frac{V_{RMS^2}}{RL}$$
 (EQ 4)

Since the BTL outputs are biased at mid-supply, there is no net DC voltage across the load. This eliminates the need for the large, expensive, performance degrading DC-blocking capacitors required by single-ended amplifiers.

7.2 Power Dissipation and Heat Sinking

Normally, the devices dissipate a significant amount of power. The maximum power dissipation is given in Table 1 as Continuous Power Dissipation, or it can be calculated by:

$$PDISSPKF(MAX) = \frac{TJ(MAX) - TA}{\Theta JA}$$
 (EQ 5)

where $T_{J(MAX)}$ is +150°C, TAMB (see Table 1) is the ambient temperature, and Θ_{JA} is the reciprocal of the derating factor in °C/W as specified in Table 1. For example, Θ_{JA} of the TQFN package is +59.2°C/W.

The increased power delivered by a BTL configuration results in an increase in internal power dissipation versus a single-ended configuration. The maximum internal power dissipation for a given Vcc and load is given by:

$$PDISSPKF(MAX) = \frac{2Vcc^2}{\pi^2 RL}$$
 (EQ 6)

Fixed Differential Gain (AS1703, AS1704, and AS1705)

If the internal power dissipation exceeds the maximum allowed for a given package, power dissipation should be reduced by increasing the ground plane heat-sinking capabilities and increasing the size of the device traces (see Section 7.5 Layout and Grounding Considerations on page 9). Additionally, reducing Vcc, increasing load impedance, and decreasing ambient temperature can reduce device power dissipation.

The integrated thermal-overload protection circuitry limits the total device power dissipation. Note that if the junction temperature is ≥ +145°C, the integrated thermal-overload protection circuitry will disable the amplifier output stage. If the junction temperature is reduced by 9°, the amplifiers will be re-enabled.

Note: A pulsing output under continuous thermal overload results as the device heats and cools.

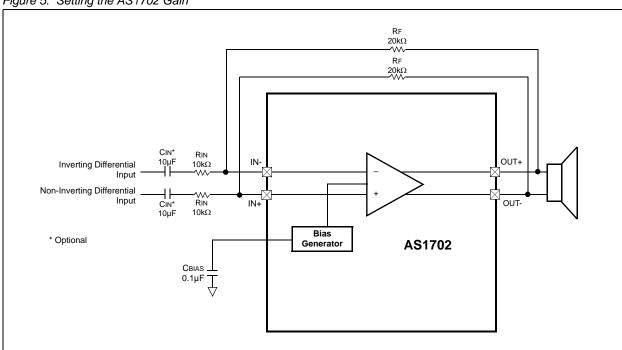
7.3 Fixed Differential Gain (AS1703, AS1704, and AS1705)

The AS1703, AS1704, and AS1705 contain different internally-fixed gains (see Ordering Information on page 12). A fixed gain facilitates simplified designs, decreased footprint size, and elimination of external gain-setting resistors.

The fixed gain values are achieved using resistors R₁ and R₂ (see Figure 3 on page 6).

7.4 Adjustable Differential Gain (AS1702)

7.4.1 Gain-Setting Resistors


The AS1702 uses external feedback resistors, RF and RIN (Figure 5), to set the gain of the device as:

$$AV = \frac{RF}{RIN} \tag{EQ 7}$$

where Av is the desired voltage gain. For example, RIN = $10k\Omega$, RF = $20k\Omega$ yields a gain of 2V/V, or 6dB.

Note: RF can be either fixed or variable, allowing the gain to be controlled by software (using a AS150x digital potentiometer. For more information on the AS1500 family of digital potentiometers, refer to the latest version of the AS150x data sheet, available from the austriamicrosystems website http://www.austriamicrosystems.com.)

Figure 5. Setting the AS1702 Gain

Layout and Grounding Considerations

7.4.2 Input Filter

The BTL inputs can be biased at voltages other than mid-supply. However, the integrated common-mode feedback circuit adjusts for input bias, ensuring the outputs are still biased at mid-supply. Input capacitors are not required if the common-mode input voltage (Vic) is within the range specified in Table 2 and Table 3.

Input capacitor CIN (if used), in conjunction with RIN, forms a high-pass filter that removes the DC bias from an incoming signal. The AC coupling capacitor allows the amplifier to bias the signal to an optimum DC level. Assuming zero-source impedance, the -3dB point of the high-pass filter is given by:

$$f\text{-}3dB = \frac{1}{2\pi RINCIN}$$
 (EQ 8)

Setting f-3dB too high affects the low-frequency response of the amplifier. Capacitors with dielectrics that have low-voltage coefficients such as tantalum or aluminum electrolytic should be used, since capacitors with high-voltage coefficients, such as ceramics, can increase distortion at low frequencies.

7.4.3 BIAS Capacitor

BIAS is the output of the internally generated Vcc/2 bias voltage. The BIAS bypass capacitor, CBIAS, improves PSRR and THD+N by reducing power supply noise and other noise sources at the common-mode bias node, and also generates the click- and pop-less DC bias waveform for the amplifiers. Bypass BIAS with a $0.1\mu F$ capacitor to GND. Larger values of CBIAS (up to $1\mu F$) improve PSRR, but increase ton/toff times. For example, a $1\mu F$ CBIAS capacitor increases ton/toff by 10 and improves PSRR by 20dB (at 1kHz).

Note: Do not connect external loads to BIAS.

7.4.4 Supply Bypassing

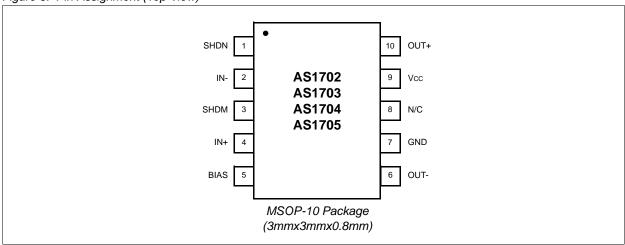
Proper power supply bypassing – connect a 10μF ceramic capacitor (CBIAS) from Vcc to GND – will ensure low-noise, low-distortion performance of the device. Additional bulk capacitance can be added as required.

Note: Place CBIAS as close to the device as possible.

7.5 Layout and Grounding Considerations

Well designed PC board layout is essential for optimizing device performance. Use large traces for the power supply inputs and amplifier outputs to minimize losses due to parasitic trace resistance and route heat away from the device.

Good grounding improves audio performance and prevents digital switching noise from coupling onto the audio signal.


8 Pinout and Packaging

8.1 Pin Descriptions and Assignments

Table 5. Pin Descriptions - MSOP-10 Package

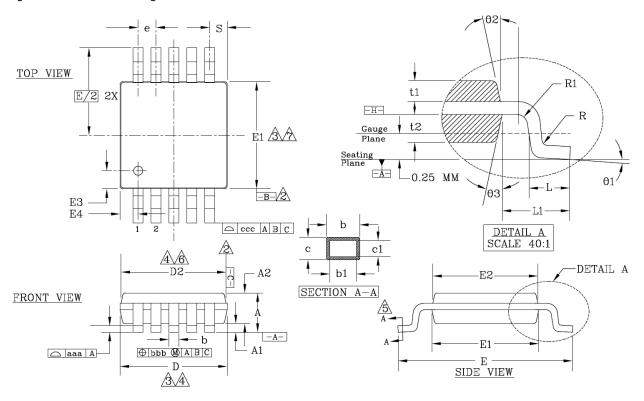

Pin	Name	Description	
1	SHDN	Shutdown Input – The polarity of this pin is dependent on the state of pin SHDM.	
2	IN-	Inverting Input.	
3	SHDM	Shutdown-Mode Polarity Input – Controls the polarity of SHDN. Connect this pin high for an active-high SHDN input. Connect this pin low for an active-low SHDN input (see Table 4 on page 5).	
4	IN+	Non-Inverting Input	
5	BIAS	DC Bias Bypass	
6	OUT-	Bridge Amplifier Negative Output	
7	GND	Ground	
8	N/C	Not connected. No internal connection.	
9	Vcc	Power Supply	
10	OUT+	Bridge Amplifier Positive Output	

Figure 6. Pin Assignment (Top View)

8.2 Package Drawings and Markings

Figure 7. MSOP-10 Package

Notes:

- 1. All dimensions are in millimeters (angle in degrees), unless otherwise specified.
- 2. Datums B and C to be determined at datum plane H.
- 3. Dimensions D and E1 are to be determined at datum plane H.
- 4. Dimensions D2 and E2 are for top package and D and E1 are for bottom package.
- 5. Cross section A-A to be determined at 0.12 to 0.25mm from the lead tip.
- 6. Dimensions D and D2 do not include mold flash, protrusion, or gate burrs.
- 7. Dimension E1 and E2 do not include interlead flash or protrusion.

PACKAGE OUTLINE (MILLIMETER) ±TOL A 1.10 MAX A1 0.10 ±0.05 A2 0.86 ±0.08 D 3.00 ±0.10 E 4.90 ±0.15 E1 3.00 ±0.10 E2 2.95 ±0.10 E3 0.51 ±0.13 E4 0.51 ±0.13 R 0.15 +0.15 R1 0.15 +0.08 t1 0.31 ±0.08 t1 0.31 ±0.08 t2 0.41 ±0.08 t2 0.41 ±0.08 t3 0.51 ±0.13 R1 0.15 +0.08 t1 0.31 ±0.08 t2 0.41 ±0.08 t3 0.51 ±0.05 t1 0.20 ±0.05 c 0.18 ±0.05 c1 0.15 +0.05 c1 0.15 +0.05 c1 0.15 ±0.05 c1 0.15 ±3.0° d2 12.0° ±3.0° d3 12.0° ±3.0° d3 12.0° ±3.0° d3 12.0° ±3.0° d3 12.0° ±3.0° d6 2 12.0° ±3.0° d7 200 ±0.05 d8 200 ±0.05 d8 200 ±0.05 d9 200 ±0.05 d0	оГ	MINI SOIC	10LD			
A 1.10 MAX A1 0.10 ±0.05 A2 0.86 ±0.08 D 3.00 ±0.10 D2 2.95 ±0.10 E 4.90 ±0.15 E1 3.00 ±0.10 E2 2.95 ±0.10 E3 0.51 ±0.13 E4 0.51 ±0.13 R 0.15 +0.08 R1 0.15 +0.08 t1 0.31 ±0.08 t2 0.41 ±0.08 t2 0.41 ±0.08 b 0.23 ±0.06 c 0.18 ±0.05 c 0.18 ±0.05 c1 0.15 ±0.05 c1 0.055 ±0.15 c1 0.95 BSC —— bbb 0.08 —— ccc 0.25 —— ccc 0.25 —— ccc 0.25 —— ccc 0.50 BSC ——	Ř					
A 1.10 MAX A1 0.10 ±0.05 A2 0.86 ±0.08 D 3.00 ±0.10 D2 2.95 ±0.10 E 4.90 ±0.15 E1 3.00 ±0.10 E2 2.95 ±0.10 E3 0.51 ±0.13 E4 0.51 ±0.13 R 0.15 +0.08 R1 0.15 +0.08 t1 0.31 ±0.08 t2 0.41 ±0.08 t2 0.41 ±0.08 b 0.23 ±0.06 c 0.18 ±0.05 c 0.18 ±0.05 c1 0.15 ±0.05 c1 0.055 ±0.15 c1 0.95 BSC —— bbb 0.08 —— ccc 0.25 —— ccc 0.25 —— ccc 0.25 —— ccc 0.50 BSC ——	SY					
A1 0.10 ±0.05 A2 0.86 ±0.08 D 3.00 ±0.10 D2 2.95 ±0.10 E 4.90 ±0.15 E1 3.00 ±0.10 E2 2.95 ±0.10 E3 0.51 ±0.13 R 0.51 ±0.13 R 0.15 ±0.15 R1 0.15 ±0.15 t1 0.31 ±0.08 t2 0.41 ±0.08 b 0.23 ±886 b1 0.20 ±0.05 c 0.18 ±0.05 c1 0.15 ±882 θ1 3.0° ±3.0° θ2 12.0° ±3.0° θ3 12.0° ±3.0° L 0.55 ±0.15 L1 0.95 BSC — bbb 0.08 ccc 0.25 e 0.50 BSC —	A	1.10	MAX			
A2	A1	0.10	±0.05			
D2 2.95 ±0.10 E 4.90 ±0.15 E1 3.00 ±0.10 E2 2.95 ±0.10 E3 0.51 ±0.13 E4 0.51 ±0.13 R 0.15 -0.08 R1 0.15 -0.08 t1 0.31 ±0.08 t2 0.41 ±0.08 b 0.23 ±836 b1 0.20 ±0.05 c 0.18 ±0.05 c 0.18 ±0.05 c1 0.15 ±0.05 c1 0.055 ±0.15 L1 0.95 BSC ———————————————————————————————————	A2	0.86	±0.08			
E 4.90 ±0.15 E1 3.00 ±0.10 E2 2.95 ±0.10 E3 0.51 ±0.13 E4 0.51 ±0.13 R 0.15 -0.08 R1 0.15 -0.08 t1 0.31 ±0.08 t2 0.41 ±0.08 b 0.23 ±886 b1 0.20 ±0.05 c 0.18 ±0.05 c 0.18 ±0.05 c1 0.15 ±0.08 e1 3.0° ±3.0° e2 12.0° ±3.0° L 0.55 ±0.15 L1 0.95 BSC — aaa 0.10 — bbb 0.08 ccc 0.25 — e 0.50 BSC —	D	3.00	±0.10			
E1 3.00 ±0.10 E2 2.95 ±0.10 E3 0.51 ±0.13 E4 0.51 ±0.13 R 0.15 -0.08 R1 0.15 -0.08 t1 0.31 ±0.08 t2 0.41 ±0.08 b 0.23 ±88 b1 0.20 ±0.05 c 0.18 ±0.05 c1 0.15 ±88 01 3.0° ±3.0° 02 12.0° ±3.0° 03 12.0° ±3.0° 03 12.0° ±0.15 L1 0.95 BSC bbb 0.08 ccc 0.25 e 0.50 BSC	D2	2.95				
E2 2.95 ±0.10 E3 0.51 ±0.13 E4 0.51 ±0.13 R 0.15 ±0.15 R1 0.15 ±0.08 t1 0.31 ±0.08 t2 0.41 ±0.08 b 0.23 ±8% b1 0.20 ±0.05 c 0.18 ±0.05 c1 0.15 ±8% 91 3.0° ±3.0° 92 12.0° ±3.0° 03 12.0° ±3.0° L 0.55 ±0.15 L1 0.95 BSC aaa 0.10 — bbb 0.08 — ccc 0.25 — e 0.50 BSC	E					
E3		3.00	±0.10			
E3	E2	2.95				
E4 0.51 ±0.13 R 0.15 ±0.15 R1 0.15 ±0.08 t1 0.31 ±0.08 t2 0.41 ±0.08 b 0.23 ±8% b1 0.20 ±0.05 c 0.18 ±0.05 c1 0.15 ±8% 91 3.0° ±3.0° 92 12.0° ±3.0° 93 12.0° ±3.0° L 0.55 ±0.15 L1 0.95 BSC aaa 0.10 — bbb 0.08 — ccc 0.25 — e 0.50 BSC —	E3	0.51	±0.13			
R1 0.15			±0.13			
R1 0.15	R	0.15	+0.15 -0.08			
t2 0.41 ±0.08 b 0.23 ±8% b1 0.20 ±0.05 c 0.18 ±0.05 c1 0.15 ±8% 91 3.0° ±3.0° 92 12.0° ±3.0° 93 12.0° ±3.0° L 0.55 ±0.15 L1 0.95 BSC aaa 0.10 — bbb 0.08 — ccc 0.25 — e 0.50 BSC —	R1		+0.15 -0.08			
t2 0.41 ±0.08 b 0.23 ±8.87 b1 0.20 ±0.05 c 0.18 ±0.05 c1 0.15 ±8.82 01 3.0° ±3.0° 02 12.0° ±3.0° 03 12.0° ±3.0° L 0.55 ±0.15 L1 0.95 BSC aaa 0.10 — bbb 0.08 — ccc 0.25 — e 0.50 BSC —	t1	0.31	±0.08			
b 0.23 ±8% b1 0.20 ±0.05 c 0.18 ±0.05 c1 0.15 ±88 e1 0.20 e1 0.15 ±8.8 e1 0.20 e1 0.15 e1 0.15 e1 0.20	t2	0.41				
b1 0.20 ±0.05 c 0.18 ±0.05 c1 0.15 ±883 θ1 3.0° ±3.0° θ2 12.0° ±3.0° θ3 12.0° ±0.15 L 0.55 ±0.15 L1 0.95 BSC ———————————————————————————————————	b	0.23	+8.87			
c1 0.15 ±8.82 91 3.0° ±3.0° 92 12.0° ±3.0° 93 12.0° ±3.0° L 0.55 ±0.15 L1 0.95 BSC aaa 0.10 — bbb 0.08 — ccc 0.25 — e 0.50 BSC —	b1					
θ1 3.0° ±3.0° θ2 12.0° ±3.0° θ3 12.0° ±3.0° L 0.55 ±0.15 L1 0.95 BSC — aaa 0.10 — bbb 0.08 — ccc 0.25 — e 0.50 BSC —		0.18				
92 12.0° ±3.0° 93 12.0° ±3.0° L 0.55 ±0.15 L1 0.95 BSC — aaa 0.10 — bbb 0.08 — ccc 0.25 — e 0.50 BSC —	c1		+0.03			
03 12.0° ±3.0° L 0.55 ±0.15 L1 0.95 BSC — aaa 0.10 — bbb 0.08 — ccc 0.25 — e 0.50 BSC —	θ1					
L 0.55 ±0.15 L1 0.95 BSC —— aaa 0.10 —— bbb 0.08 —— ccc 0.25 —— e 0.50 BSC ——	92					
L1 0.95 BSC —— aaa 0.10 —— bbb 0.08 —— ccc 0.25 —— e 0.50 BSC ——	θ3		±3.0°			
aaa 0.10 bbb 0.08 ccc 0.25 e 0.50 BSC —		0.55	±0.15			
bbb 0.08 ——————————————————————————————————	L1	0.95 BSC				
e 0.25	aaa	0.10				
e 0.50 BSC —	bbb	0.08				
	ccc	0.25				
S 0.50 BSC —						
	S	0.50 BSC				

9 Ordering Information

The AS1702, AS1703, AS1704, and AS1705 are available with adjustable or preset amplifier gain.

Part Number	Package Type	Delivery Form	Gain	Description
AS1702-T			Adjustable	
AS1703-T	MSOP-10	Tape and Reel	Av = 0dB	Package Size = 3x3x0.8mm
AS1704-T	WISOP-10		Av = 3dB	Fackage Size = 3x3x0.0IIIII
AS1705-T			Av = 6dB	

Copyrights

Copyright © 1997-2005, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-Europe. Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

All products and companies mentioned are trademarks or registered trademarks of their respective companies.

Disclaimer

Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement. austriamicrosystems AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for current information. This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for each application.

The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However, austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of austriamicrosystems AG rendering of technical or other services.

Contact Information

Headquarters

austriamicrosystems AG A-8141 Schloss Premstaetten, Austria

Tel: +43 (0) 3136 500 0 Fax: +43 (0) 3136 525 01

e-mail: info@austriamicrosystems.com

For Sales Offices, Distributors and Representatives, please visit:

http://www.austriamicrosystems.com