Data Sheet

Description

The ASSR-40xC Series is specifically designed for fast switching applications, commonly found in the test and measurement systems. The low $C \times R$ and low output offstate leakage current provide higher system throughput and reduce system errors.

The dual channel configuration of ASSR-402C is equivalent to 2 Form A Electromechanical Relays (EMR). One channel of the relay consists of an AIGaAs infrared light-emitting diode (LED) input stage optically coupled to a high-voltage output detector circuit. The detector consists of a high-speed photovoltaic diode array and driver circuitry to switch on/off two discrete high voltage MOSFETs. The relay turns on (contact closes) with a minimum input current of 1 mA through the input LED. The relay turns off (contact opens) with an input voltage of 0.8 V or less.

ASSR-401C is available in 4-pin SO package and ASSR402C is available in 8-pin DIP and Gull Wing Surface Mount packages. Their electrical and switching characteristics are specified over the temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Functional Diagram

Single Channel, SPST Relay,
1 Form A in 4-Pin SO Package

Features

- Compact Solid-State Bi-directional Signal Switch
- Single and Dual Channel Normally-off Single-Pole-Single-Throw (SPST) Relay
- 400V Output Withstand Voltage
- 0.04A Current Rating
- Low Input Current: $I_{F}=1 \mathrm{~mA}$
- Low Cx R: 650pF• Ω typical
- Low Output Off-state Leakage Current: 0.3nA typical
- Fast Speed Switching: 0.08 ms (Ton), 0.05 ms (Toff) typical
- High Transient Immunity: > $\mathrm{kV} / \mu \mathrm{s}$
- High Input-to-Output Insulation Voltage (Safety and Regulatory Approvals Pending)
- 3750 Vrms for 1 min per UL1577
- CSA Component Acceptance

Applications

- Automatic Test Equipment
- Data Acquisition System
- Datalogger and Recorder
- Multiplexer
- Measuring Instrument
- EMR / Reed Relay Replacement

Ordering Information

ASSR-xxxx is UL Recognized with 3750 Vrms for 1 minute per UL1577 and is approved under CSA Component Acceptance Notice \#5, File CA 88324.

Part number	Option	Package	Surface Mount	Gull Wing	Tape \& Reel	Quantity
	RoHS Compliant					
ASSR-401C	-003E	S0-4	X			100 units per tube
	-503E		X		X	1500 units per reel
ASSR-402C	-002E	$\begin{gathered} 300 \mathrm{mil} \\ \text { DIP-8 } \end{gathered}$				50 units per tube
	-302E		x	x		50 units per tube
	-502E		X	X	X	1000 units per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.
Example 1:
ASSR-401C-503E to order product of Surface Mount SO-4 package in Tape and Reel packaging and RoHS Compliant.
Example 2:
ASSR-402C-002E to order product of 300 mil DIP-8 package in tube packaging and RoHS Compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Schematic

ASSR-401C

ASSR-402C

Package Outline Drawings

ASSR-401C 4-Pin Small Outline Package

LAND PATTERN RECOMMENDATION

DIMENSIONS IN MILLIMETERS AND [INCHES] OPTION NUMBER 500 AND UL RECOGNITION NOT MARKED

ASSR-402C 8-Pin DIP Package

DIMENSIONS IN MILLIMETERS AND (INCHES). OPTION NUMBERS 300 AND 500 NOT MARKED.

Lead Free IR Profile

Use of non-chlorine-activated fluxes is highly recommended.

Regulatory Information

The ASSR-401C and ASSR-402C are pending approval by the following organizations:
UL
Pending approval under UL 1577, component recognition program up to $\mathrm{V}_{\text {ISO }}=3750 \mathrm{~V}_{\mathrm{RMS}}$
CSA
Pending approval under CSA Component Acceptance Notice \#5.
Insulation and Safety Related Specifications

Parameter	Symbol	ASSR-401C	ASSR-402C	Units	Conditions
Minimum External Air Gap (Clearance)	$\mathrm{L}(101)$	4.9	7.1	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	$\mathrm{L}(102)$	4.9	7.4	mm	Measured from input terminals to out- put terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)	CTI	175	175	V	DIN IEC 112/VDE 0303 Part 1
Tracking Resistance (Com- parative Tracking Index)	0.08	0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.	
Isolation Group (DIN VDE0109)	IIIa	IIIa	Material Group (DIN VDE0109)		

Absolute Maximum Ratings

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Input Current (ON)	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	1	10	mA	1
Input Voltage (OFF)	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	0	0.8	V	
Operating Temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	

Package Characteristics

Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions	Note
Input-Output Momentary Withstand Voltage	$\mathrm{V}_{\mathrm{ISO}}$	3750			Vrms	$\mathrm{RH} \leq 50 \%$,	2,3
Input-Output Resistance	$\mathrm{R}_{\mathrm{I}-\mathrm{O}}$		10^{12}		Ω	$\mathrm{~V}_{\mathrm{l}-\mathrm{O}}=500 \mathrm{Vdc}$	
Input-Output Capacitance							
ASSR-401C	$\mathrm{C}_{\mathrm{I}-\mathrm{O}}$		0.4		pF	$\mathrm{f}=1 \mathrm{MHz} ;$	2
ASSR-402C			0.8			$\mathrm{~V}_{\mathrm{l}-\mathrm{O}}=0 \mathrm{Vdc}$	2

Electrical Specifications (DC)

Over recommended operating $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise specified.

| Parameter | Sym. | Min. | Typ. | Max. | Units | Conditions | Note |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Output Withstand
 Voltage | $\left\|\mathrm{V}_{\mathrm{O}(\mathrm{OFF})}\right\|$ | 400 | 440 | | V | $\mathrm{V}_{\mathrm{F}}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=250 \mu \mathrm{~A}$,
 $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ | |

Switching Specifications (AC)

Over recommended operating $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions	Fig.	Note
Turn On Time	TON		0.08	0.2	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{0}=40 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
				0.5	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}$		
			0.16	0.5	ms	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
				0.8	ms	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}$		
Turn Off Time	TOFF		0.05	0.2	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
				0.5	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}$		
			0.05	0.2	ms	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
				0.5	ms	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=40 \mathrm{~mA}$		
Output Transient Rejection	$\mathrm{dV}_{\mathrm{O}} / \mathrm{dt}$	1	7		kV/ $\mu \mathrm{s}$	$\Delta \mathrm{V}_{\mathrm{O}}=400 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
Input-Output Transient Rejection	$\mathrm{dV} \mathrm{l}_{\text {-O }} / \mathrm{dt}$	1	≥ 10		kV/ $\mu \mathrm{s}$	$\Delta \mathrm{V}_{\mathrm{I}-\mathrm{O}}=1000 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		

Notes:

1. For qualified device performance over temperature range, it is recommended to operate at $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$.
2. Device is considered as a two terminal device: pins $1,2,3$ and 4 shorted together and pins $5,6,7$ and 8 shorted together.
3. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-2 Insulation Characteristics Table (if applicable), your equipment level safety specification, or Avago Technologies Application Note 1074, "Optocoupler Input-Output Endurance Voltage."
4. The PCB design and environmental conditions are taken into consideration when measuring the lo(OFF) performance.
5. During the pulsed $R_{(O N)}$ measurement (l_{0} duration $\leq 30 \mathrm{~ms}$), ambient $\left(T_{A}\right)$ and case temperature $\left(T_{C}\right)$ are equal.
