Hardware Description RF Design Kit ATAK57xx

Description

The RF Design Kit supports the development of RKE systems with Atmel's UHF FSK/ASK remote control transmitters T57xx and UHF FSK/ASK remote control receivers T57xx.

The RF Design Kit consists of a motherboard (microcontroller board), an RF receiver (receiver design board), an RF transmitter (transmitter design board), an interface board and various other components as listed below. The configuration of the RF receiver and transmitter is programmable via the PC with the RF Design Kit software. The data communication between the PC and the application boards works via the serial port (RS-232).

The various kit versions and the corresponding order numbers are listed in the separate document "Selection Guide RF Design Kit ATAK57xx".

Design Kit Contents

- 1 Motherboard (Microcontroller Board)
- 1 Interface Board
- 1 Transmitter Design Board ATAB57xx
- 1 Receiver Design Board ATAB57xx
- 1 9-pin RS-232 Cable
- 1 DC Power Cable
- 1 Whip Antenna with BNC Connector (Male)
- 1 Lithium Battery CR2032
- 1 PCB Jack for Transmitter Design Board (Used to Supply the Transmitter IC from Battery)
- 1 Adapter SMB (Female) to BNC (Female)
- 1 Atmel CD-ROM "Software/Documentation"
- 1 Atmel CD-ROM "Products"

Please bear in mind that the components provided with the RF Design Kit, as illustrated in Figure 1 on page 2, may look slightly different for the various kits.

ATAK57xx Hardware Description

Application Note

Preliminary

Figure 1. Kit Contents

Motherboard

Features	 Flexibility to Operate Various Transmitter and Receiver Design Boards 12 V DC Power Supply with Short-circuit Protection RS-232 Connector Power-on Switch Plug-in Connector for DC Power Cable Four Contact Strips to Connect the Interface Board and the Receiver Design Board LED for Power Supply Indication RESET Key LED for Sensitivity Indication LED for IC_ACTIVE Indication of the Receiver LED for Indication of RESET and Communication over RS-232 		
General Functionality	The motherboard is an AVR [®] -based microcontroller board which handles the data com- munication with the RF Design Kit software on a connected PC, the receiver design board and the transmitter design board. Its building blocks are shown in Figure 2 on page 3 and the schematic is given in Figure 3 on page 4 (only the actually assembled components are illustrated). The function of the LEDs is described in Table 1 on page 3.		

Figure 2. Building Blocks of the Motherboard

Table 1. Function of the LEDs on the Motherbo	oard
---	------

Designator	Colour	Function	Comment
LD4	Green	Flashes after a RESET and during communication via RS-232	_
LD5	Yellow	IC_ACTIVE of the receiver, operated inversely as LED IC_ACTIVE on the receiver design board On -> Receiver inactive (sleep mode) Off -> Receiver active (bit-check and receiving mode)	Depending on the programmed sleep times of the receiver this LED switches off rather quickly. Due to inertia of the human eye, this LED seems to be on though it is flashing. When increasing the sleep time, the LED emits brighter light and vice versa.
LD6	Red	Sensitivity indicator On -> Full sensitivity Off -> Reduced sensitivity	_
LD7	Green	5 V power supply indicator for the motherboard and for the contact strips On -> Voltage on Off -> Voltage off	Contact strips are used as power supply for the interface board and the receiver design board.

Figure 3. Schematic of the Motherboard

ATAK57xx Hardware Description [Preliminary]

4

Interface Board

The interface board (see Figure 4 on page 5) consists of a socket for programming of the transmitter design board and five LEDs for different functions as illustrated in Table 2 on page 5. For protection against short circuits, the programming socket is equipped with a polarizing key between pin 3 and pin 4.

Figure 4. Interface Board

Table 2. Function of the LEDs on Interface Board

Designator	Color	Function
D1	Blue	On -> AVR is ready to receive data from the connected receiver Flashing -> data is being received
D2	Orange	Testword incorrect and microcontroller limits ok, see page 8
D3	Yellow	Microcontroller limits out of selected borders
D4	Green	Testword ok and microcontroller limits ok, see page 8
D5	Red	Communication via RS-232 is active

Operation of the RF Design Kit

Assembly of the Kit Components To configure the RF transmitter or receiver, the appropriate design board must be connected to the motherboard. To prevent damaging, the interface board, the design boards must be plugged-in as shown in Figure 5 on page 6. The motherboard has to be connected to a PC via a serial port (RS-232). The configuration will be set by the RF Design Kit software.

During configuration, the AVR microcontroller on the motherboard handles the data communication with the PC, the receiver design board and the transmitter design board.

When configured, the transmitter design board operates stand-alone and can be removed.

The installation of the RF Design Kit software is explained in the separate document "ATAK57xx Software Description".

Figure 5. Assembly of the Components

Starting the RF Design Kit

Connecting the RF Design Kit

To ensure proper operation, the following steps should be carried out before starting the RF Design Kit software:

- 1. Insert the lithium cell into the battery holder of the transmitter design board.
- 2. Check that the RF Design Kit is assembled as shown in Figure 5 on page 6.
- 3. Connect the 9-pin RS-232 cable to an unused serial port.
- Connect the DC power cable to a 12 V DC power supply unit (on-board 5 V regulator).
- 5. Switch on the 12 V DC power supply of the motherboard.
- 6. Switch on the PC and start the operating system.
- 7. Press the reset button (Key RESET).
- 8. Start the RF Design Kit software with the command: RF-Designkit.exe

Progamming of the Transmitter Design Board

- 1. Remove the PCB jack from the transmitter design board.
- 2. Plug the transmitter design board into the socket on the interface board.
- 3. Program the desired settings via the RF Design Kit software.
- 4. Remove the transmitter design board from the socket of the interface board.
- 5. Plug-in the PCB jack to supply the transmitter IC from battery.
- 6. The transmitter design board can now be operated in stand-alone.

ATAK57xx Hardware Description [Preliminary]

ATAK57xx Hardware Description [Preliminary]

Programming of the Receiver Design Board

The receiver design board operates only in conjunction with the motherboard, hence proceed as follows:

- 1. Switch off the power supply of the motherboard.
- 2. Plug the receiver design board into the contact strips as shown in Figure 5 on page 6.
- 3. Switch on the power supply of the motherboard.
- 4. Program the desired settings via the RF Design Kit software.

Principle Function After power on, the AVR microcontroller on the motherboard configures the RF receiver. The receiver is then in polling mode and verifies the presence of a valid transmitter signal. The parameters for the bit-check (BR_Range, N_{bitcheck}, T_{sleep}, Lim_min, Lim_max) are programmable with the RF Design Kit software. If a valid transmitter signal is detected, the receiver remains active and transfers the data stream to the connected AVR microcontroller on the motherboard.

Figure 6. Principle Function

The AVR microcontroller continuously measures the time between two signal edges (= 1 sample). If the time t \geq 1/baud rate, the following 64 samples will be stored in the RAM of the microcontroller (start of measurement/end of measurement, see Figure 6 on page 7). Then, the RF receiver will be set back to polling mode by the microcontroller pulling pin DATA to '0' for a time t₁. The timing limits of 1/baud rate are programmable in the RF Design Kit software.

The 64 samples will be examined by means of the microcontroller to distinguish between a valid signal from a corresponding transmitter and signals due to noise. This is done by a time frame check where the samples are continuously compared to a programmable time window (μ C_Limits).

If the samples are within the time window and the received data stream is equal to a programmable testword (Testword), this will be indicated by the LED D4 on the interface board. After the evaluation of the received data stream, the RF receiver will set back to polling mode.

The timing information (64 samples) also can be evaluated with the functions "Testword", "Histogram" and "Timing_List" in the RF Design Kit software menu.

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© Atmel Corporation 2003. All rights reserved.

Atmel® and combinations thereof, and AVR® are the registered trademarks of Atmel Corporation or its subsidiaries.

Other terms and product names may be the trademarks of others.

