

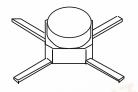
# 2-16 GHz Low Noise Gallium Arsenide FET

Technical Data

ATF-13336

#### **Features**

Notecom


- Low Noise Figure: 1.4 dB Typical at 12 GHz
- High Associated Gain: 9.0 dB Typical at 12 GHz
- **High Output Power:** 17.5 dBm Typical P <sub>1 dB</sub> at 12 GHz
- Cost Effective Ceramic Microstrip Package
- Tape-and-Reel Packaging Option Available<sup>[1]</sup>

## **Description**

The ATF-13336 is a high performance gallium arsenide Schottky-barrier-gate field effect transistor housed in a cost effective microstrip package. Its premium noise figure makes this device appropriate for use in low noise amplifiers operating in the 2-16 GHz frequency range.

This GaAs FET device has a nominal 0.3 micron gate length with a total gate periphery of 250 microns. Proven gold based metallization systems and nitride passivation assure a rugged, reliable device.

## 36 micro-X Package



## Electrical Specifications, $T_A = 25$ °C

| Symbol            | Parameters and Test Conditions                                                                      | INTEREST                     | Units    | Min. | Тур.       | Max. |
|-------------------|-----------------------------------------------------------------------------------------------------|------------------------------|----------|------|------------|------|
| NFo               | Optimum Noise Figure: $V_{DS} = 2.5 \text{ V}$ , $I_{DS} = 20 \text{ mA}$                           | f = 8.0  GHz                 | dB       |      | 1.2        |      |
|                   |                                                                                                     | f = 12.0 GHz<br>f = 14.0 GHz | dB       |      | 1.4<br>1.6 | 1.6  |
| $G_{A}$           | Gain @ NF <sub>0</sub> : $V_{DS} = 2.5 \text{ V}$ , $I_{DS} = 20 \text{ mA}$                        | f = 8.0  GHz                 | dB       |      | 11.5       |      |
|                   |                                                                                                     | f = 12.0 GHz<br>f = 14.0 GHz | dB<br>dB | 8.0  | 9.0<br>7.5 |      |
| P <sub>1 dB</sub> | Power Output @ 1 dB Gain Compression: $V_{DS} = 4  V, I_{DS} = 40  \text{mA}$                       | f = 12.0 GHz                 | dBm      |      | 17.5       |      |
| $ m G_{1dB}$      | $1~\mathrm{dB}$ Compressed Gain: $\mathrm{V_{DS}} = 4~\mathrm{V}, \mathrm{I_{DS}} = 40~\mathrm{mA}$ | $f = 12.0 \mathrm{GHz}$      | dB       |      | 8.5        |      |
| g <sub>m</sub>    | Transconductance: $V_{DS} = 2.5 \text{ V}, V_{GS} = 0 \text{ V}$                                    |                              | mmho     | 25   | 55         |      |
| IDSS              | Saturated Drain Current: $V_{DS} = 2.5 \text{ V}, V_{GS} = 0 \text{ V}$                             |                              | mA       | 40   | 50         | 90   |
| P                 | Pinch-off Voltage: $V_{DS} = 2.5 \text{ V}$ , $I_{DS} = 1 \text{ mA}$                               |                              | V        | -4.0 | -1.5       | -0.5 |

1. Refer to PACKAGING section "Tape-and-Reel Packaging for Surface Mount Semiconductors".

#### **ATF-13336 Absolute Maximum Ratings**

| Carrah al         | Danamatan               | TI:4-a | Absolute               |
|-------------------|-------------------------|--------|------------------------|
| Symbol            | Parameter               | Units  | Maximum <sup>[1]</sup> |
| $ m V_{DS}$       | Drain-Source Voltage    | V      | +5                     |
| $ m V_{GS}$       | Gate-Source Voltage     | V      | -4                     |
| $V_{ m GD}$       | Gate-Drain Voltage      | V      | -6                     |
| $I_{\mathrm{DS}}$ | Drain Current           | mA     | $I_{\mathrm{DSS}}$     |
| $P_{T}$           | Power Dissipation [2,3] | mW     | 225                    |
| $T_{\mathrm{CH}}$ | Channel Temperature     | °C     | 175                    |
| $T_{STG}$         | Storage Temperature     | °C     | -65 to +175            |

| Thermal Resistance:         | $\theta_{\rm jc} = 400$ °C/W; $T_{\rm CH} = 150$ °C |
|-----------------------------|-----------------------------------------------------|
| Liquid Crystal Measurement: | 1 μmSpotSize <sup>[5]</sup>                         |

### **Part Number Ordering Information**

| Part Number   | Devices Per Reel | Reel Size |  |  |
|---------------|------------------|-----------|--|--|
| ATF-13336-TR1 | 1000             | 7"        |  |  |
| ATF-13336-STR | 10               | strip     |  |  |

# ATF-13336 Noise Parameters: $V_{DS}$ = 2.5 V, $I_{DS}$ = 20 mA

| Freq. | NFo | Γ   | D /50 |                    |  |
|-------|-----|-----|-------|--------------------|--|
| GHz   | dB  | Mag | Ang   | R <sub>N</sub> /50 |  |
| 4.0   | 0.8 | .63 | 93    | .27                |  |
| 6.0   | 1.1 | .47 | 138   | .10                |  |
| 8.0   | 1.2 | .40 | -153  | .20                |  |
| 12.0  | 1.4 | .52 | -45   | .88                |  |
| 14.0  | 1.6 | .57 | -2    | 1.3                |  |

### ATF-13336 Typical Performance, $T_A = 25^{\circ}C$

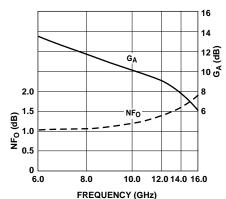



Figure 1. Optimum Noise Figure and Associated Gain vs. Frequency.  $V_{DS}=2.5V,\,I_{DS}=20\text{ mA},\,T_A=25^{\circ}C.$ 

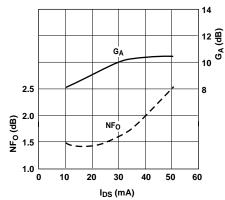
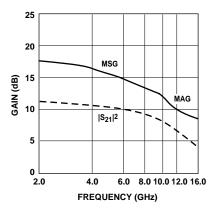
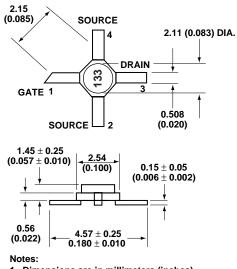



Figure 2. Optimum Noise Figure and Associated Gain vs.  $I_{DS}$ .  $V_{DS}=2.5V,\,f=12.0$  GHz.

#### **Notes:**

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2.  $T_{CASE\ TEMPERATURE} = 25$ °C.
- 3. Derate at 2.5mW/°C for  $T_{\rm CASE} > 85\,^{\circ}{\rm C}$  .
- 4. Storage above +150°C may tarnish the leads of this package difficult to solder into a circuit. After a device has been soldered into a circuit, it may be safely stored up to 175°C.
- 4. The small spot size of this technique results in a higher, though more accurate determination of  $\theta_{jc}$  than do alternate methods. See MEASUREMENTS section for more information.





Figure 3. Insertion Power Gain, Maximum Available Gain and Maximum Stable Gain vs. Frequency.  $V_{DS} = 2.5 \text{ V}, I_{DS} = 20 \text{ mA}.$ 

 $\textbf{Typical Scattering Parameters,} \ \ \text{Common Emitter,} \ \ Z_{O} = 50 \ \Omega, \\ T_{A} = 25 \ \text{°C}, \\ V_{DS} = 2.5 \ \text{V}, \\ I_{DS} = 20 \ \text{mA}$ 

| Freq. | S    | $\mathbf{S}_{11}$ |      | $\mathbf{S}_{21}$ |            | $\mathbf{S}_{12}$ |      | S           | 22   |             |
|-------|------|-------------------|------|-------------------|------------|-------------------|------|-------------|------|-------------|
| GHz   | Mag. | Ang.              | dB   | Mag.              | Ang.       | dB                | Mag. | Ang.        | Mag. | Ang.        |
| 2.0   | .96  | -51               | 10.6 | 3.39              | 127        | -27.1             | .044 | 57          | .61  | -41         |
| 3.0   | .88  | -75               | 10.3 | 3.28              | 106        | -23.4             | .060 | 33          | .58  | -51         |
| 4.0   | .86  | -96               | 10.1 | 3.19              | 86         | -22.6             | .074 | 25          | .57  | -57         |
| 5.0   | .79  | -117              | 9.9  | 3.13              | 66         | -20.6             | .093 | 12          | .54  | <b>-</b> 65 |
| 6.0   | .69  | -142              | 10.2 | 3.22              | 46         | -18.9             | .114 | 1           | .49  | -79         |
| 7.0   | .60  | -178              | 10.1 | 3.21              | 21         | -17.6             | .132 | -18         | .42  | -97         |
| 8.0   | .54  | 141               | 9.8  | 3.10              | <b>-</b> 4 | -17.3             | .137 | <b>-</b> 33 | .31  | -112        |
| 9.0   | .56  | 103               | 8.9  | 2.80              | -26        | -16.7             | .147 | -48         | .21  | -121        |
| 10.0  | .56  | 74                | 8.3  | 2.60              | -48        | -16.5             | .150 | <b>-</b> 63 | .09  | -145        |
| 11.0  | .58  | 44                | 7.6  | 2.39              | -68        | -16.8             | .145 | -78         | .07  | 89          |
| 12.0  | .63  | 20                | 6.7  | 2.17              | -90        | -17.5             | .133 | <b>-</b> 95 | .16  | 43          |
| 13.0  | .65  | 3                 | 6.0  | 2.00              | -108       | -18.3             | .121 | -107        | .19  | 21          |
| 14.0  | .66  | -7                | 5.5  | 1.89              | -126       | -18.9             | .114 | -121        | .19  | -4          |
| 15.0  | .70  | -19               | 4.9  | 1.76              | -144       | -19.0             | .112 | -129        | .16  | -28         |
| 16.0  | .72  | -34               | 4.4  | 1.66              | -175       | -19.2             | .110 | -142        | .14  | -32         |

A model for this device is available in the DEVICE MODELS section.

## 36 micro-X Package Dimensions



- Dimensions are in millimeters (inches)
   Tolerances: in .xxx = ± 0.005
- mm .xx =  $\pm$  0.13