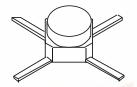
0.5-12 GHz Low Noise Gallium Arsenide FET

Technical Data

ATF-10236

Features


- Low Noise Figure: 0.8 dB Typical at 4 GHz
- Low Bias: $V_{DS} = 2V$, $I_{DS} = 20$ mA
- High Associated Gain: 13.0 dB Typical at 4 GHz
- High Output Power: 20.0 dBm Typical P_{1dB}at 4 GHz
- Cost Effective Ceramic Microstrip Package
- Tape-And-Reel Packaging Option Available^[1]

Description

The ATF-10236 is a high performance gallium arsenide Schottky-barriergate field effect transistor housed in a cost effective microstrip package. Its low noise figure makes this device appropriate for use in the first and second stages of low noise amplifiers operating in the 0.5-12 GHz frequency range.

This GaAs FET device has a nominal 0.3 micron gate length using airbridge interconnects between drain fingers. Total gate periphery is 500 microns. Proven gold based metallization systems and nitride passivation assure a rugged, reliable device.

36 micro-X Package

Electrical Specifications, $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions		Units	Min.	Тур.	Max.
NF _O	Optimum Noise Figure: $V_{DS} = 2 \text{ V}$, $I_{DS} = 25 \text{ mA}$	f = 2.0 GHz f = 4.0 GHz f = 6.0 GHz	dB dB dB	W	0.6 0.8 1.0	1.0
G _A	Gain @ NF _O ; $V_{DS} = 2 \text{ V}$, $I_{DS} = 25 \text{ mA}$	$\begin{array}{c} f = 2.0\mathrm{GHz} \\ f = 4.0\mathrm{GHz} \\ f = 6.0\mathrm{GHz} \end{array}$	dB dB dB	12.0	16.5 13.0 10.5	
$P_{1 dB}$	Power Output @ 1 dB Gain Compression $V_{DS} = 4 \text{ V}, I_{DS} = 70 \text{ mA}$	f = 4.0 GHz	dBm		20.0	
$G_{1 \text{ dB}}$	$1~\mathrm{dB}$ Compressed Gain: $\mathrm{V_{DS}} = 4~\mathrm{V}, \mathrm{I_{DS}} = 70~\mathrm{mA}$	f = 4.0 GHz	dB		12.0	
$g_{\rm m}$	Transconductance: $V_{DS} = 2 V$, $V_{GS} = 0 V$		mmho	80	140	
I_{DSS}	Saturated Drain Current: $V_{DS} = 2 V$, $V_{GS} = 0 V$		mA	70	130	180
V _P	Pinchoff Voltage: $V_{DS} = 2 \text{ V}$, $I_{DS} = 1 \text{ mA}$		V	-3.0	-1.3	-0.8

ATF-10236 Absolute Maximum Ratings

			Absolute
Symbol	Parameter	Units	Maximum ^[1]
$V_{ m DS}$	Drain-Source Voltage	V	1 5
V_{GS}	Gate-Source Voltage	V	-4
$ m V_{GD}$	Gate-Drain Voltage	V	-7
I_{DS}	Drain Current	mA	I_{DSS}
P_{T}	Power Dissipation [2,3]	mW	430
T_{CH}	Channel Temperature	°C	175
T_{STG}	Storage Temperature ^[4]	°C	175

Thermal Resistance:	$\theta_{\rm jc} = 350$ °C/W; $T_{\rm CH} = 150$ °C
Liquid Crystal Measurement:	1μm Spot Size ^[5]

Part Number Ordering Information

Part Number	Devices Per Reel	Reel Size		
ATF-10236-TR1	1000	7"		
ATF-10236-STR	10	STRIP		

For more information, see "Tape and Reel Packaging for Semiconductor Devices."

ATF-10236 Noise Parameters: $V_{DS} = 2 \text{ V}$, $I_{DS} = 25 \text{ mA}$

Freq.	NFo	Γ	D /50	
GHz	dB	Mag	Ang	$R_{N}/50$
0.5	0.45	0.93	18	0.75
1.0	0.5	0.87	36	0.63
2.0	0.6	0.73	74	0.33
4.0	0.8	0.45	148	0.15
6.0	1.0	0.42	-137	0.12
8.0	1.3	0.49	-80	0.45

ATF-10236 Typical Performance, $T_A = 25^{\circ}C$

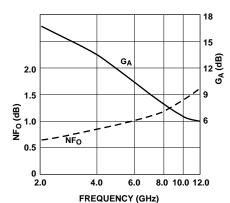
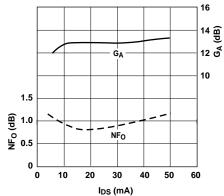
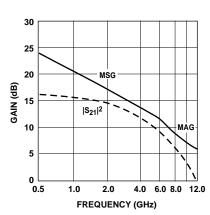



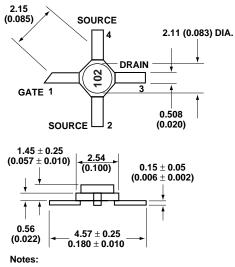
Figure 1. Optimum Noise Figure and Associated Gain vs. Frequency. $V_{DS}=2V,\,I_{DS}=25\text{ mA},\,T_{A}=25^{\circ}C.$

 $\label{eq:figure 2.0} Figure~2.~Optimum~Noise~Figure~and~Associated~Gain~vs.~I_{DS}.\\ V_{DS}=2V,~f=4.0~GHz.$

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{\text{CASE TEMPERATURE}} = 25$ °C.
- 3. Derate at 2.9 mW/°C for $T_{CASE} > 25$ °C.
- 4. Storage above +150°C may tarnish the leads of this package making it difficult to solder into a circuit. After a device has been soldered into a circuit, it may be safely stored up to 175°C.
- 5. The small spot size of this technique results in a higher, though more accurate determination of θ_{jc} than do alternate methods. See MEASUREMENTS section for more information.




Figure 3. Insertion Power Gain, Maximum Available Gain and Maximum Stable Gain vs. Frequency. $V_{DS}=2\ V,\ I_{DS}=25\ mA.$

Typical Scattering Parameters, Common Source, $Z_O = 50 \Omega$, $T_A = 25$ °C, $V_{DS} = 2 V$, $I_{DS} = 25 \text{ mA}$

Freq.	S	11	\mathbf{S}_{21}		\mathbf{S}_{12}			\mathbf{S}_{22}		
GHz	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.5	.97	-20	15.1	5.68	162	-32.8	.023	76	.47	-11
1.0	.93	-4 1	14.9	5.58	143	-26.0	.050	71	.45	-23
2.0	.77	- 81	13.6	4.76	107	-21.3	.086	51	.36	-38
3.0	.59	-114	12.2	4.06	80	-18.4	.120	35	.30	- 51
4.0	.48	-148	10.9	3.51	52	-16.5	.149	18	.23	-67
5.0	.46	166	9.6	3.03	26	-15.3	.172	3	.10	-67
6.0	.53	125	8.5	2.65	1	-14.5	.189	-14	.09	48
7.0	.62	96	6.9	2.22	-20	-14.4	.191	-28	.24	55
8.0	.71	73	4.9	1.75	-39	-14.5	.189	- 41	.37	51
9.0	.75	54	3.3	1.47	-55	-14.7	.184	- 46	.46	42
10.0	.78	39	2.1	1.28	-72	-14.9	.180	-59	.51	34
11.0	.82	26	0.3	1.04	-86	-14.9	.179	-71	.54	26
12.0	.84	12	-0.5	0.95	-101	-15.0	.177	- 82	.54	17

A model for this device is available in the DEVICE MODELS section.

36 micro-X Package Dimensions

- Dimensions are in millimeters (inches)
 Tolerances: in .xxx = ± 0.005
- mm .xx = \pm 0.13