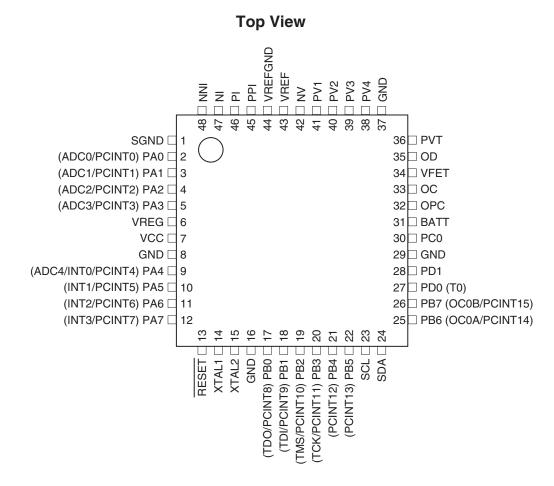
Features

- High Performance, Low Power AVR® 8-bit Microcontroller
- Advanced RISC Architecture
 - 124 Powerful Instructions Most Single Clock Cycle Execution
 - 32 x 8 General Purpose Working Registers
 - Fully Static Operation
 - Up to 1 MIPS Throughput at 1 MHz
- Nonvolatile Program and Data Memories
 - 40K Bytes of In-System Self-Programmable Flash, Endurance: 10,000 Write/Erase
 Cycles
 - Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program
 True Read-While-Write Operation
 - 512 bytes EEPROM, Endurance: 100,000 Write/Erase Cycles
 - 2K Bytes Internal SRAM
 - Programming Lock for Software Security
- On-chip Debugging
 - Extensive On-chip Debug Support
 - Available through JTAG interface
- Battery Management Features
 - Two, Three, or Four Cells in Series
 - Deep Under-voltage Protection
 - Over-current Protection (Charge and Discharge)
 - Short-circuit Protection (Discharge)
 - Integrated Cell Balancing FETs
 - High Voltage Outputs to Drive Charge/Precharge/Discharge FETs
- Peripheral Features
 - One 8-bit Timer/Counter with Separate Prescaler, Compare Mode, and PWM
 - One 16-bit Timer/Counter with Separate Prescaler and Compare Mode
 - 12-bit Voltage ADC, Eight External and Two Internal ADC Inputs
 - High Resolution Coulomb Counter ADC for Current Measurements
 - TWI Serial Interface for SM-Bus
 - Programmable Wake-up Timer
 - Programmable Watchdog Timer
- Special Microcontroller Features
 - Power-on Reset
 - On-chip Voltage Regulator
 - External and Internal Interrupt Sources
 - Four Sleep Modes: Idle, Power-save, Power-down, and Power-off
- Packages
 - 48-pin LQFP
- Operating Voltage: 4.0 25V
- Maximum Withstand Voltage (High-voltage pins): 28V
- Temperature Range: -30°C to 85°C
 - Speed Grade: 1 MHz

8-bit AVR®
Microcontroller with 40K Bytes In-System
Programmable Flash

ATmega406

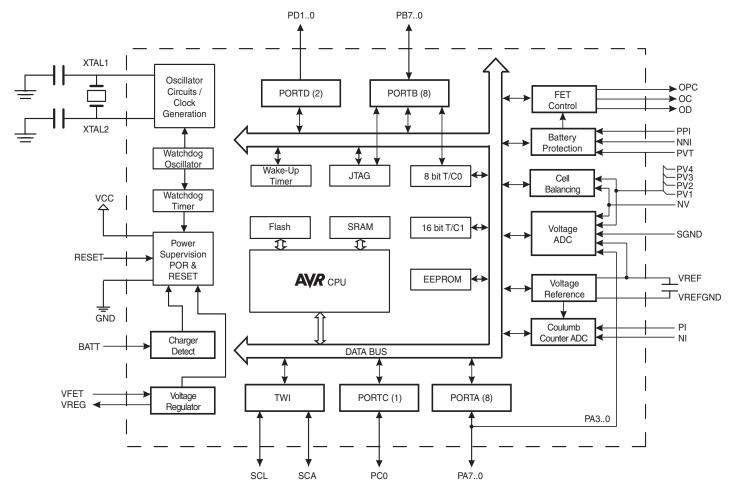
Preliminary Summary



1. Pin Configurations

Figure 1-1. Pinout ATmega406.

1.1 Disclaimer


Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.

2. Overview

The ATmega406 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega406 achieves throughputs approaching 1 MIPS at 1 MHz.

2.1 Block Diagram

Figure 2-1. Block Diagram

The ATmega406 provides the following features: a Voltage Regulator, dedicated Battery Protection Circuitry, integrated cell balancing FETs, high-voltage analog front-end, and an MCU with two ADCs with On-chip voltage reference for battery fuel gauging.

The voltage regulator operates at a wide range of voltages, 4.0 - 25 volts. This voltage is regulated to a constant supply voltage of nominally 3.3 volts for the integrated logic and analog functions.

The battery protection monitors the battery voltage and charge/discharge current to detect illegal conditions and protect the battery from these when required. The illegal conditions are deep under-voltage during discharging and short-circuit during discharging, and over-current during charging and discharging.

The integrated cell balancing FETs allow cell balancing algorithms to be implemented in software.

The MCU provides the following features: 40K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes EEPROM, 2K byte SRAM, 32 general purpose working registers, 18 general purpose I/O lines, 11 high-voltage I/O lines, a JTAG Interface for On-chip Debugging support and programming, two flexible Timer/Counters with PWM and compare modes, one Wake-up Timer, an SM-Bus compliant TWI module, internal and external interrupts, a 12-bit Sigma Delta ADC for voltage and temperature measurements, a high resolution Sigma Delta ADC for Coulomb Counting and instantaneous current measurements, a programmable Watchdog Timer with internal Oscillator, and four software selectable power saving modes.

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The Idle mode stops the CPU while allowing the other chip function to continue functioning. The Power-down mode allows the voltage regulator, battery protection, regulator current detection, Watchdog Timer, and Wake-up Timer to operate, while disabling all other chip functions until the next Interrupt or Hardware Reset. In Power-save mode, the Wake-up Timer and Coulomb Counter ADC continues to run.

The device is manufactured using Atmel's high voltage high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System, by a conventional non-volatile memory programmer or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash, fuel gauging ADCs, dedicated battery protection circuitry, Cell Balancing FETs, and a voltage regulator on a monolithic chip, the Atmel ATmega406 is a powerful microcontroller that provides a highly flexible and cost effective solution for Li-ion Smart Battery applications.

The ATmega406 AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, and On-chip Debugger.

2.2 Pin Descriptions

2.2.1 VFET

Input to the internal voltage regulator.

2.2.2 VCC

Digital supply voltage. Normally connected to VREG.

2.2.3 VREG

Output from the internal voltage regulator.

2.2.4 VREF

Internal Voltage Reference for external decoupling.

2.2.5 VREFGND

Ground for decoupling of Internal Voltage Reference.

2.2.6 GND

Ground

2.2.7 SGND

Signal Ground.

2.2.8 Port A (PA7:PA0)

PA3:PA0 serves as the analog inputs to the Voltage A/D Converter.

Port A also serves as a low-voltage 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the ATmega406 as listed in "Alternate Functions of Port A" on page 69.

2.2.9 Port B (PB7:PB0)

Port B is a low-voltage 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B also serves the functions of various special features of the ATmega406 as listed in "Alternate Functions of Port B" on page 71.

2.2.10 Port C (PC0)

Port C is a high voltage Open Drain output port.

2.2.11 Port D (PD1:PD0)

Port D is a low-voltage 2-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). As inputs, Port D pins that are externally pulled low will source current if the pull-up

resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega406 as listed in "Alternate Functions of Port D" on page 73.

Input for detecting when a charger is connected. This pin also defines the pull-up level for OC

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 11 on page

2.2.12	SCL	SMBUS clock, Open Drain bidirectional pin.
2.2.13	SDA	SMBUS data, Open Drain bidirectional pin.
2.2.14	ОС	High voltage output to drive Charge FET.
2.2.15	OD	High voltage output to drive Discharge FET.
2.2.16	OPC	High voltage output to drive Pre-charge FET.
2.2.17	NI	NI is the filtered negative input from the current sense resistor.
2.2.18	NNI	NNI is the unfiltered negative input from the current sense resistor.
2.2.19	PI	PI is the filtered positive input from the current sense resistor.
2.2.20	PPI	PPI is the unfiltered positive input from the current sense resistor.
2.2.21	NV/PV1/PV2/	PV3/PV4 NV, PV1, PV2, PV3, and PV4 are the inputs for battery cells 1, 2, 3, and 4.
2.2.22	PVT	PVT is the sense input for deep under-voltage protection. This pin also defines the pull-up level for the OD output.
2.2.23	BATT	

38. Shorter pulses are not guaranteed to generate a reset.

ATmega406

RESET

and OPC outputs.

2.2.24

2.2.25 XTAL1

Input to the inverting Oscillator amplifier.

2.2.26 XTAL2

Output from the inverting Oscillator amplifier.

3. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

For I/O Registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".

4. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	=	-		-	-	-	-	_	191
(0xFE)	Reserved	_	_	_	_	_	_	_	_	
(0xFD)	Reserved	_	_	_	_	_	_	_	_	
(0xFC)	Reserved	_	_	_	_	_	_	_	_	
(0xFB)	Reserved	_	_	_	_	_	_	_	_	
(0xFA)	Reserved	_	_	_	_	_	_	_	_	
(0xF9)	Reserved							_	_	
(0xF9) (0xF8)	BPPLR	_	_	_	_	_	_	BPPLE	BPPL	158
	BPCR			_	_	DUVD	SCD	DCD	CCD	158
(0xF7)	CBPTR	_			_	DOAD		PT[3:0]	CCD	159
(0xF6)	BPOCD			T[3:0] L[3:0]						159
(0xF5)								DL[3:0]		
(0xF4)	BPSCD	_	_	- DINT4	- DIN/T0			DL[3:0]		160
(0xF3)	BPDUV	-	-	DUVT1	DUVT0	510.45		DL[3:0]	00/5	161
(0xF2)	BPIR	DUVIF	COCIF	DOCIF	SCIF	DUVIE	COCIE	DOCIE	SCIE	161
(0xF1)	CBCR	_	-	-	-	CBE4	CBE3	CBE2	CBE1	168
(0xF0)	FCSR	-	-	PWMOC	PWMOPC	CPS	DFE	CFE	PFD	164
(0xEF)	Reserved	-	-	-	-	_	_	-	_	
(0xEE)	Reserved	_	-	-	-	_	-	-	-	
(0xED)	Reserved	-	-	-	-	_	-	-	-	
(0xEC)	Reserved	-	-	-	-	_	-	-	-	
(0xEB)	Reserved	_	_	-	-	_	_	-	-	
(0xEA)	Reserved	_	_	_	_	_	_	_	_	
(0xE9)	CADICH					C[15:8]				143
(0xE8)	CADICL					IC[7:0]				143
(0xE7)	CADRDC					IDC[7:0]				144
(0xE6)	CADRCC					CC[7:0]				143
(0xE5)	CADCSRB	_	CADACIE	CADRCIE	CADICIE	-	CADACIF	CADRCIF	CADICIF	142
(0xE4)	CADCSRA	CADEN	_	CADUB	CADAS1	CADAS0	CADSI1	CADSI0	CADSE	140
(0xE3)	CADAC3					C[31:24]				143
(0xE2)	CADAC2				CADA	C[23:16]				143
(0xE1)	CADAC1				CADA	C[15:8]				143
(0xE0)	CADAC0				CAD	AC[7:0]				143
(0xDF)	Reserved	-	-	_	-	-	-	-	-	
(0xDE)	Reserved	-	_	-	-	_	_	-	-	
(0xDD)	Reserved	-	-	-	-	-	-	-	-	
(0xDC)	Reserved	_	-	-	-	-	_	-	-	
(0xDB)	Reserved	-	-	-	-	-	-	-	-	
(0xDA)	Reserved	-	-	-	-	-	-	-	-	
(0xD9)	Reserved	-	_	-	-	_	-	-	-	
(0xD8)	Reserved	-	_	-	-	_	_	-	-	
(0xD7)	Reserved	-	_	-	-	_	_	-	-	
(0xD6)	Reserved	-	_	-	-	_	-	-	-	
(0xD5)	Reserved	-	-	-	-	_	-	-	-	
(0xD4)	Reserved	-	-	-	-	-	-	-		
(0xD3)	Reserved	_	_	-	-	_	_	-	_	
(0xD2)	Reserved	_	_	-	-	_	_	-	-	
(0xD1)	BGCRR	BGCR7	BGCR6	BGCR5	BGCR4	BGCR3	BGCR2	BGCR1	BGCR0	152
(0xD0)	BGCCR	BGEN	_	BGCC5	BGCC4	BGCC3	BGCC2	BGCC1	BGCC0	152
(0xCF)	Reserved	-	-	-	-	-	-	-	-	
(0xCE)	Reserved	=	-	-	-	=	=	-	=	
(0xCD)	Reserved	-	-	_	-	_	-	-	=	
(0xCC)	Reserved	-	_	_	-	-	-	-	-	
(0xCB)	Reserved	-	-	-	-	-	-	-	-	
(0xCA)	Reserved	_	_	_	-	_	_	-	-	
(0xC9)	Reserved	_	_	_	-	_	-	-	_	
(0xC8)	Reserved	-	-	-	-	-	-	-	-	
(0xC7)	Reserved	-	_	_	-	-	-	_	_	
(0xC6)	Reserved	_	_	-	-	_	_	-	_	
(0xC5)	Reserved	_	_	-	-	_	_	-	_	
,,	Reserved	_	_	_	_	_	_	_	_	
(0xC4)							_	-	_	
(0xC4) (0xC3)	Reserved	_	_	_	_	_				
(0xC3)	Reserved Reserved	-	-	-	_	_	_	_	_	
	Reserved Reserved		1						1	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xBF)	Reserved	-	-	_	-	-	-	-	_	
(0xBE)	TWBCSR	TWBCIF	TWBCIE	_	_	-	TWBDT1	TWBDT0	TWBCIP	137
(0xBD)	TWAMR			•	TWAM[6:0]				-	118
(0xBC)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	115
(0xBB)	TWDR				2-wire Serial Inte	erface Data Regis	ter			117
(0xBA)	TWAR				TWA[6:0]				TWGCE	117
(0xB9)	TWSR			TWS[7:3]			_	TWPS1	TWPS0	116
(0xB8)	TWBR			2-	-wire Serial Interf	ace Bit Rate Reg	ister			115
(0xB7)	Reserved	-		-	-	-	-	-	-	
(0xB6)	Reserved	-	-	-	-	-	-	-	-	
(0xB5)	Reserved	-	_	_	-	-	-	-	-	
(0xB4)	Reserved	-	_	_	-	-	-	-	-	
(0xB3)	Reserved	-	_	_	-	-	-	-	-	
(0xB2)	Reserved	-	_	-	-	-	-	-	_	
(0xB1)	Reserved	-	_	-	-	-	-	-	-	
(0xB0)	Reserved	_	_	_	-	-	-	-	-	
(0xAF)	Reserved	-	-	-	-	-	-	-	-	
(0xAE)	Reserved	_	_	_	_	_	_	_	_	
(0xAD)	Reserved	_	-	-	-	-	-	-	_	
(0xAC) (0xAB)	Reserved Reserved	_	_	_	_	_	_	_	_	
(0xAA)	Reserved	_	_	_	_	_	_	_	_	
(0xAA) (0xA9)	Reserved			_	_	_	_	_		
(0xA8)	Reserved			_	_		_		_	
(0xA7)	Reserved								_	
(0xA7)	Reserved	_	_	_	_	_	_	_	_	
(0xA5)	Reserved			_	_		_		_	
(0xA4)	Reserved	_	_	_	_	_	_	_	_	
(0xA3)	Reserved	_	_	_	_	_	_	_	_	
(0xA2)	Reserved	_	_	_	_	_	_	_	_	
(0xA1)	Reserved	_	_	_	_	_	_	_	_	
(0xA0)	Reserved	_	_	_	_	_	_	_	_	
(0x9F)	Reserved	_	_	_	_	-	_	_	_	
(0x9E)	Reserved	_	_	_	_	_	_	_	_	
(0x9D)	Reserved	_	_	_	_	_	_	_	_	
(0x9C)	Reserved	_	_	_	_	_	_	_	_	
(0x9B)	Reserved	_	_	_	-	-	-	-	_	
(0x9A)	Reserved	_	_	_	_	_	_	_	_	
(0x99)	Reserved	-	-	_	_	-	-	-	-	
(0x98)	Reserved	-	_	_	_	-	-	-	-	
(0x97)	Reserved	-	-	-	-	-	-	-	_	
(0x96)	Reserved	-	=	-	-	-	-	-	-	
(0x95)	Reserved	_	-	-	-	-	-	-	-	
(0x94)	Reserved	_	_	_	_	-	_	_	_	
(0x93)	Reserved	-	_	_	-	-	-	-	-	
(0x92)	Reserved	-	-	-	-	-	-	-	-	
(0x91)	Reserved	-	-	-	-	-	-	-	-	
(0x90)	Reserved	-	_	_	-	-	-	-	-	
(0x8F)	Reserved	-	_	-	-	-	-	-	-	
(0x8E)	Reserved	_	_	_	-	-	-	-	-	
(0x8D)	Reserved	-	-	-	-	-	-	-	-	
(0x8C)	Reserved	-	_	-	-	-	-	-	-	
(0x8B)	Reserved	-	-	-	-	-	-	-	-	
(0x8A)	Reserved	_	_		-		-	-	_	
(0x89)	OCR1AH					ompare Register				103
(0x88)	OCR1AL					Compare Register	-			103
(0x87)	Reserved	-	_	-	-	-	-	-	_	
(0x86)	Reserved	-	-			- Decister His	- Dudo	-	_	100
(0x85)	TCNT1H					unter Register Hig				103
(0x84)	TCNT1L					unter Register Lo	1			103
(0x83)	Reserved	-	-	-	-	-	-	-	_	
(0x82)	Reserved	-	-	+	-		- C010	- C011		100
(0x81)	TCCR1B	-	-	-	-	CTC1	CS12	CS11	CS10	102
(0x80)	Reserved	-	-	-	-	-	-	-	=	
(0x7F) (0x7E)	Reserved DIDR0	_	_	_	_	- VADC3D	VADC2D	- VADC1D	VADC0D	150
(UX/E)	טאטוט	_	_	-	-	VADOSD	VADUZD	VADOTO	VADCOD	150

ATmega406

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x7D)	Reserved	_	-	_	-	-	-	-	-	
(0x7C)	VADMUX	_	-	_	_	VADMUX3	VADMUX2	VADMUX1	VADMUX0	148
(0x7B)	Reserved	-	-	-	-	-	-	_	_	
(0x7A)	VADCSR	-	-	-	-	VADEN	VADSC	VADCCIF	VADCCIE	149
(0x79)	VADCH	-	-	-	_		VADC Data Re	egister High byte		149
(0x78)	VADCL		1	1	VADC Data R	egister Low byte	ı	1		149
(0x77)	Reserved	-	_	-	-	-	-	-	-	
(0x76)	Reserved	_	-	_	-	-	-	-	-	
(0x75)	Reserved	_	_	_	_	_	_	_	_	
(0x74)	Reserved Reserved	_	_	_	_	_	_	-	-	
(0x73) (0x72)	Reserved		_	_	_	_	_	_	-	
(0x72) (0x71)	Reserved				_	_		_	_	
(0x71)	Reserved	_	_	_	_	_	_	_	_	
(0x6F)	TIMSK1	_	_	_	_	_	_	OCIE1A	TOIE1	104
(0x6E)	TIMSK0	_	_	_	_	_	OCIE0B	OCIE0A	TOIE0	95
(0x6D)	Reserved	_	_	_	_	_	-	-	-	
(0x6C)	PCMSK1				PCIN	IT[15:8]				60
(0x6B)	PCMSK0					NT[7:0]				60
(0x6A)	Reserved	_	_	_	_	-	_	_	_	
(0x69)	EICRA	ISC31	ISC30	ISC21	ISC20	ISC11	ISC10	ISC01	ISC00	57
(0x68)	PCICR	-	-	_	-	-	-	PCIE1	PCIE0	59
(0x67)	Reserved	_	_	_	_	-	-	_	_	
(0x66)	FOSCCAL				Fast Oscillator C	alibration Registe	er			29
(0x65)	Reserved	_	_	_	-	-	_	_	_	
(0x64)	PRR0	_	-	_	-	PRTWI	PRTIM1	PRTIM0	PRVADC	37
(0x63)	Reserved	=	-	=	-	-	-	-	-	
(0x62)	WUTCSR	WUTIF	WUTIE	WUTCF	WUTR	WUTE	WUTP2	WUTP1	WUTP0	49
(0x61)	Reserved	_	-	-	-	-	-	_	_	
(0x60)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	47
0x3F (0x5F)	SREG	I	T	Н	S	V	N	Z	С	11
0x3E (0x5E)	SPH	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	13
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	13
0x3C (0x5C)	Reserved	-	_	-	-	-	-	_	-	
0x3B (0x5B)	Reserved	-	-	-	-	-	-	-	-	
0x3A (0x5A)	Reserved	-	_	-	-	-	-	_	-	
0x39 (0x59)	Reserved	_	_	_	-	-	_	_	-	
0x38 (0x58)	Reserved SPMCSR	-	- -	-	- DMM40DE	- DI DOET	- POWET	_ 	- ODMEN	100
0x37 (0x57)		SPMIE _	RWWSB	SIGRD _	RWWSRE _	BLBSET _	PGWRT _	PGERS -	SPMEN -	180
0x36 (0x56) 0x35 (0x55)	Reserved MCUCR	JTD	_	_	PUD	_	_	IVSEL	IVCE	54/69
0x34 (0x54)	MCUSR	-	_		JTRF	WDRF	BODRF	EXTRF	PORF	43
0x33 (0x53)	SMCR	_	_	_	-	SM2	SM1	SM0	SE	33
0x32 (0x52)	Reserved	_	_	_	_	-	-	-	-	
0x31 (0x51)	OCDR					ebug Register				174
0x30 (0x50)	Reserved	_	_	_	_	_	_	_	_	
0x2F (0x4F)	Reserved	-	_	-	-	-	-	_	_	
0x2E (0x4E)	Reserved	-	_	-	-	-	-	-	-	
0x2D (0x4D)	Reserved	-	_	-	-	-	-	-	-	
0x2C (0x4C)	Reserved	-	-	-	-	-	-	-	-	
0x2B (0x4B)	GPIOR2				General Purpo	se I/O Register 2				25
0x2A (0x4A)	GPIOR1				General Purpo	se I/O Register 1				25
0x29 (0x49)	Reserved	_	_	_	_	_	-	_	_	
0x28 (0x48)	OCR0B					out Compare Reg				94
0x27 (0x47)	OCR0A		Timer/Counter0 Output Compare Register A					94		
0x26 (0x46)	TCNT0					unter0 (8 Bit)	T	1		94
0x25 (0x45)	TCCR0B	FOC0A	FOC0B	_	-	WGM02	CS02	CS01	CS00	93
0x24 (0x44)	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00	90
0x23 (0x43)	GTCCR	TSM	_	_	_	-	-	PSRASY	PSRSYNC	106
0x22 (0x42)	EEARH	-	-	_			-	_	High Byte	20
0x21 (0x41)	EEARL			E		s Register Low By	yte			20
0x20 (0x40)	EEDR			EED.:		Data Register		F=5-	5555	20
0x1F (0x3F)	EECR	_	-	EEPM1	EEPM0	EERIE	EEMPE	EEPE	EERE	20
0x1E (0x3E)	GPIOR0					se I/O Register 0	INTO	INT4	INTO	25
0x1D (0x3D)	EIMSK	-	-	-	-	INT3 INTF3	INT2 INTF2	INT1 INTF1	INT0 INTF0	58 58
0x1C (0x3C)	EIFR	_	_		_					

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x1B (0x3B)	PCIFR	-	-	-	-	-	-	PCIF1	PCIF0	
0x1A (0x3A)	Reserved	-	-	-	-	_	_	-	-	
0x19 (0x39)	Reserved	_	_	-	-	_	_	-	_	
0x18 (0x38)	Reserved	_	-	-	-	_	_	-	-	
0x17 (0x37)	Reserved	-	-	-	-	_	_	-	-	
0x16 (0x36)	TIFR1	_	_	-	-	_	_	OCF1A	TOV1	104
0x15 (0x35)	TIFR0	_	-	-	-	_	OCF0B	OCF0A	TOV0	95
0x14 (0x34)	Reserved	-	-	-	-	_	-	-	_	
0x13 (0x33)	Reserved	-	-	-	-	-	-	-	-	
0x12 (0x32)	Reserved	-	-	-	-	_	-	-	_	
0x11 (0x31)	Reserved	-	-	-	-	_	_	-	-	
0x10 (0x30)	Reserved	_	_	-	-	_	_	-	_	
0x0F (0x2F)	Reserved	_	-	-	-	_	_	-	-	
0x0E (0x2E)	Reserved	-	-	-	-	_	_	-	-	
0x0D (0x2D)	Reserved	_	_	-	-	_	_	-	_	
0x0C (0x2C)	Reserved	_	-	-	-	_	_	-	_	
0x0B (0x2B)	PORTD	-	-	-	-	_	_	PORTD1	PORTD0	75
0x0A (0x2A)	DDRD	_	_	-	-	_	_	DDD1	DDD0	75
0x09 (0x29)	PIND	_	-	-	-	_	_	PIND1	PIND0	75
0x08 (0x28)	PORTC	-	-	-	-	_	-	-	PORTC0	78
0x07 (0x27)	Reserved	_	_	-	-	_	_	-	-	
0x06 (0x26)	Reserved	_	-	-	-	_	_	-	_	
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	74
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	74
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	75
0x02 (0x22)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTB3	PORTA2	PORTA1	PORTA0	74
0x01 (0x21)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	74
0x00 (0x20)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	74

Notes:

- 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
- 2. I/O registers within the address range \$00 \$1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- 3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses \$00 \$3F must be used. When addressing I/O registers as data space using LD and ST instructions, \$20 must be added to these addresses. The ATmega406 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from \$60 \$FF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND	LOGIC INSTRUCTIONS	· ·	·		l
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	Rd ← Rd - Rr - C	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	Rd ← Rd • Rr	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd \vee Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	Rd ← 0xFF – Rd	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← 0x00 − Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	Rd ← Rd v K	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	Rd ← Rd • (0xFF - K)	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd − 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	Rd ← Rd • Rd	Z,N,V	1
CLR	Rd	Clear Register	Rd ← Rd ⊕ Rd	Z,N,V	1
SER	Rd	Set Register	Rd ← 0xFF	None	1
MUL	Rd, Rr	Multiply Unsigned	R1:R0 ← Rd x Rr	Z,C	2
MULS	Rd, Rr	Multiply Signed	R1:R0 ← Rd x Rr	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	R1:R0 ← Rd x Rr	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	R1:R0 ← (Rd x Rr) << 1	Z,C	2
FMULS FMULSU	Rd, Rr Rd, Rr	Fractional Multiply Signed	$R1:R0 \leftarrow (Rd \times Rr) << 1$ $R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C Z,C	2
		Fractional Multiply Signed with Unsigned	$R : R \cup \leftarrow (R \cup X R r) < < 1$	Ζ,Ο	2
RJMP		Deletive home	DC - DC - k - 1	Nama	
IJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$ $PC \leftarrow Z$	None None	2
JMP	k	Indirect Jump to (Z) Direct Jump	PC ← k	None	3
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3
ICALL	K	Indirect Call to (Z)	PC ← Z	None	3
CALL	k	Direct Subroutine Call	PC ← k	None	4
RET	K	Subroutine Return	PC ← STACK	None	4
RETI		Interrupt Return	PC ← STACK	I	4
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC ← PC + 2 or 3	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(Rr(b)=1)$ PC \leftarrow PC + 2 or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if $(P(b)=0)$ PC \leftarrow PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(P(b)=1)$ PC \leftarrow PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC←PC+k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC←PC+k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC ← PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC ← PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC ← PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC ← PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC ← PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC ← PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC ← PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if $(N \oplus V = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if (N ⊕ V= 1) then PC ← PC + k + 1	None	1/2
	k	Branch if Half Carry Flag Set	if (H = 1) then PC ← PC + k + 1	None	1/2
BRHS					1/2
BRHS BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
		Branch if Half Carry Flag Cleared Branch if T Flag Set	if $(H = 0)$ then $PC \leftarrow PC + k + 1$ if $(T = 1)$ then $PC \leftarrow PC + k + 1$	None None	1/2
BRHC	k				
BRHC BRTS	k k	Branch if T Flag Set	if (T = 1) then PC ← PC + k + 1	None	1/2

5. Instruction Set Summary (Continued)

Mnemonics	Operands	Description	Operation	Flags	#Clocks
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2
BIT AND BIT-TEST I	NSTRUCTIONS				
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	s s	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR BST	Rr, b	Flag Clear Bit Store from Register to T	$SREG(s) \leftarrow 0$ $T \leftarrow Rr(b)$	SREG(s)	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC	nu, b	Set Carry	C ← 1	C	1
CLC		Clear Carry	C ← 0	C	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	I ← 1	1	1
CLI		Global Interrupt Citable Global Interrupt Disable	1←0	Ti .	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	T	1
CLT		Clear T in SREG	T ← 0	T	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER II	NSTRUCTIONS				
MOV	Rd, Rr	Move Between Registers	Rd ← Rr	None	1
MOVW	Rd, Rr	Copy Register Word	$Rd+1:Rd \leftarrow Rr+1:Rr$	None	1
LDI	Rd, K	Load Immediate	$Rd \leftarrow K$	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, Rd \leftarrow (Z)	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	(X) ← Rr	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	Y ← Y - 1, (Y) ← Rr	None	2
STD	Y+q,Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow \operatorname{Rr}, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect with Displacement	$Z \leftarrow Z - 1$, $(Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	(Z + q) ← Rr	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	3
LPM LPM	Rd, Z	Load Program Memory Load Program Memory	$R0 \leftarrow (Z)$ $Rd \leftarrow (Z)$	None None	3
LPM	Rd, Z+	Load Program Memory Load Program Memory and Post-Inc	$Rd \leftarrow (Z)$ $Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM	11U, ZT	Store Program Memory	$Ru \leftarrow (Z), Z \leftarrow Z+1$ (Z) \leftarrow R1:R0	None	-
IN	Rd, P	In Port	(2) ← RT:RU Rd ← P	None	1
ПА	Hu, F	III FUIL	nu ← F	None	<u> </u>

5. Instruction Set Summary (Continued)

Mnemonics	Operands	Description	Operation	Flags	#Clocks
OUT	P, Rr	Out Port	P ← Rr	None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
MCU CONTROL INS	STRUCTIONS				
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

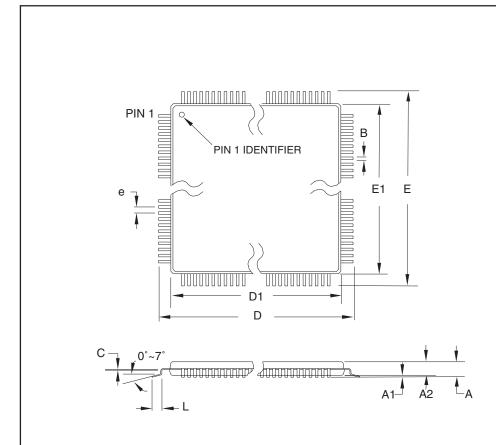
ATmega406

6. Ordering Information

Speed (MHz)	Power Supply	Ordering Code	Package ⁽¹⁾	Operation Range
1	4.0 - 25V	ATmega406-1AAU ⁽²⁾	48AA	Industrial (-30°C to 85°C)

Notes:

- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.


	Package Type
48AA	48-lead, 7 x 7 x 1.44 mm body, 0.5 mm lead pitch, Low Profile Plastic Quad Flat Package (LQFP)

7. Packaging Information

7.1 48AA

COMMON DIMENSIONS

(Unit of Measure = mm)

	(,	
SYMBOL	MIN	NOM	MAX	NOTE
А	_	-	1.60	
A1	0.05	_	0.15	
A2	1.35	1.40	1.45	
D	8.75	9.00	9.25	
D1	6.90	7.00	7.10	Note 2
Е	8.75	9.00	9.25	
E1	6.90	7.00	7.10	Note 2
В	0.17	-	0.27	
С	0.09	_	0.20	
L	0.45	-	0.75	
е	·	0.50 TYP		

Notes

- 1. This package conforms to JEDEC reference MS-026, Variation BBC.
- Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.

TITLE

3. Lead coplanarity is 0.08 mm maximum.

10/5/2001

A mer	2325 Orchard	Parkway
AIIIEL	2325 Orchard San Jose, CA	95131

48AA , 48-lead, 7 x 7 mm Body Size, 1.4 mm Body Thickness,
0.5 mm Lead Pitch, Low Profile Plastic Quad Flat Package (LQFP)

DRAWING NO.	REV.
48AA	С

- 8. Errata
- 8.1 All rev.

No known errata.

- 9. Datasheet Revision History
- 9.1 Rev 2548A 01/05
 - **1.** Initial revision.

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland

Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00

Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland

Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

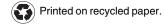
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA

Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine

BP 123


38521 Saint-Egreve Cedex, France

Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

@ Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, AVR®, and AVR Studio® are registered trademarks, and Everywhere You AreSM are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

