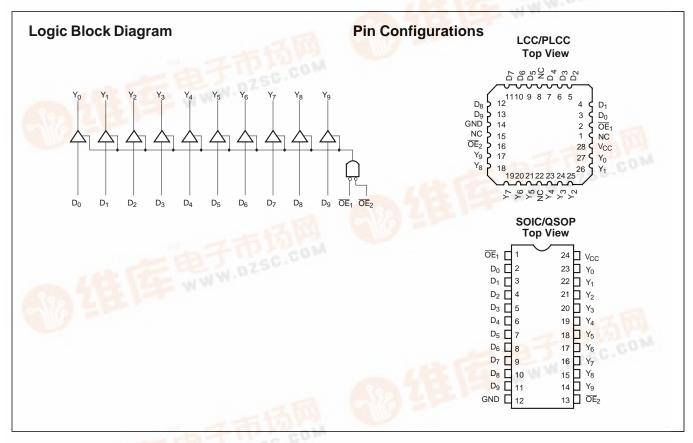


CY54/74FCT827T

SCCS034 - September 1994 - Revised March 2000

10-Bit Buffer


Features

- Function, pinout, and drive compatible with FCT, F, and AM29827 logic
- FCT-C speed at 4.4 ns max. (Com'l) FCT-A speed at 5.0 ns max. (Com'l)
- Reduced V_{OH} (typically = 3.3V) versions of equivalent FCT functions
- Edge-rate control circuitry for significantly improved noise characteristics
- Power-off disable feature
- ESD > 2000V
- · Matched rise and fall times
- Fully compatible with TTL input and output logic levels

Sink current 64 mA (Com'l), 32 mA (Mil) 32 mA (Com'l), 12 mA (Mil)

Functional Description

The FCT827T 10-bit bus driver provides high-performance bus interface buffering for wide data/address paths or buses carrying parity. The 10-bit buffers have NAND-ed output enables for maximum control flexibility. The FCT827T is designed for high-capacitance load drive capability, while providing low-capacitance bus loading at both inputs and outputs. All outputs are designed for low-capacitance bus loading in the high-impedance state and are designed with a power-off disable feature to allow for live insertion of boards.

Function Table^[1]

A CONTRACTOR	Inputs		Outputs	
OE ₁	OE ₂	D	Y	Function
L	L	L	L	Transparent
L	L	H	H	
H	X	X	Z	Three-State
X	H	X	Z	

HIGH Voltage Level. L = LOW Voltage Level. X = Don't Care

df.dzsc.com

Maximum Ratings^[2, 3]

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied-65°C to +135°C Supply Voltage to Ground Potential -0.5V to +7.0V DC Input Voltage.....-0.5V to +7.0V DC Output Voltage -0.5V to +7.0V DC Output Current (Maximum Sink Current/Pin)......120 mA

Power Dissipation	0.5W
Static Discharge Voltage	.>2001V
(per MIL-STD-883, Method 3015)	

Operating Range

Range	Range	Ambient Temperature	V _{CC}
Commercial	All	-40°C to + 85°C	5V ± 5%
Military ^[4]	All	–55°C to +125°C	5V ± 10%

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Condition	Min.	Typ. ^[5]	Max.	Unit	
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -32 mA	Com'l	2.0			V
		V _{CC} = Min., I _{OH} = -15 mA	Com'l	2.4	3.3		V
		V _{CC} = Min., I _{OH} = -12 mA	Mil	2.4	3.3		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 64 mA	Com'l		0.3	0.55	V
		V _{CC} = Min., I _{OL} = 32 mA	Mil		0.3	0.55	V
V _{IH}	Input HIGH Voltage		·	2.0			V
V _{IL}	Input LOW Voltage					0.8	V
V _H	Hysteresis ^[6]	All inputs			0.2		V
V _{IK}	Input Clamp Diode Voltage	V _{CC} = Min., I _{IN} = -18 mA			-0.7	-1.2	V
I _I	Input HIGH Current	V _{CC} = Max., V _{IN} = V _{CC}				5	μΑ
I _{IH}	Input HIGH Current	V _{CC} = Max., V _{IN} = 2.7V				±1	μΑ
I _{IL}	Input LOW Current	V _{CC} = Max., V _{IN} = 0.5V				±1	μΑ
I _{OZH}	Off State HIGH-Level Output Current	$V_{CC} = Max., V_{OUT} = 2.7V$				10	μА
I _{OZL}	Off State LOW-Level Output Current	$V_{CC} = Max., V_{OUT} = 0.5V$				-10	μА
I _{OS}	Output Short Circuit Current ^[7]	V _{CC} = Max., V _{OUT} = 0.0V		-60	-120	-225	mA
I _{OFF}	Power-Off Disable	V _{CC} = 0V, V _{OUT} = 4.5V				±1	μΑ

Capacitance^[6]

Parameter	Description	Typ. ^[5]	Max.	Unit
C _{IN}	Input Capacitance	5	10	pF
C _{OUT}	Output Capacitance	9	12	pF

Notes:

- Unless otherwise noted, these limits are over the operating free-air temperature range. Unused inputs must always be connected to an appropriate logic voltage level, preferably either V_{CC} or ground.
- T_A is the "instant on" case temperature.

- I_A is the "instant on" case temperature.

 Typical values are at V_{CC}=5.0V, T_A=+25°C ambient.

 This parameter is specified but not tested.

 Not more than one output should be shorted at a time. Duration of short should not exceed one second. The use of high-speed test apparatus and/or sample and hold techniques are preferable in order to minimize internal chip heating and more accurately reflect operational values. Otherwise prolonged shorting of a high output may raise the chip temperature well above normal and thereby cause invalid readings in other parametric tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

Power Supply Characteristics

Parameter	Description	Test Conditions	Typ. ^[5]	Max.	Unit
I _{CC}	Quiescent Power Supply Current	V_{CC} =Max., V_{IN} ≤0.2V, V_{IN} ≥ V_{CC} -0.2V	0.1	0.2	mA
Δl _{CC}	Quiescent Power Supply Current (TTL inputs HIGH)	V _{CC} =Max., V _{IN} =3.4V, ^[8] f ₁ =0, Outputs Open	0.5	2.0	mA
I _{CCD}	Dynamic Power Supply Current ^[9]	V _{CC} =Max., One Input Toggling, 50% Duty Cycle, Outputs Open, OE ₁ or OE ₂ =GND, V _{IN} ≤0.2V or V _{IN} ≥V _{CC} -0.2V	0.06	0.12	mA/MHz
Ic	Total Power Supply Current ^[10]	V_{CC} =Max., 50% Duty Cycle, Outputs Open, One Bit Toggling at f ₁ =10 MHz, \overline{OE}_1 or \overline{OE}_2 =GND, V_{IN} ≤0.2V or V_{IN} ≥ V_{CC} -0.2V	0.7	1.4	mA
		V_{CC} =Max.,50% Duty Cycle, Outputs Open, One Bit Toggling at f ₁ =10 MHz, \overline{OE}_1 or \overline{OE}_2 =GND, V_{IN} =3.4V or V_{IN} =GND	1.0	2.4	mA
		V_{CC} =Max., 50% Duty Cycle, Outputs Open, Ten Bits Toggling at f_1 =2.5 MHz, \overline{OE}_1 or \overline{OE}_2 =GND, V_{IN} ≤0.2V or V_{IN} ≥ V_{CC} -0.2V	1.6	3.2 ^[11]	mA
		V_{CC} =Max., 50% Duty Cycle, Outputs Open, Ten Bits Toggling at f ₁ =2.5 MHz, \overline{OE}_1 or \overline{OE}_2 =GND, V_{IN} =3.4V or V_{IN} =GND	4.1	13.2 ^[11]	mA

Notes:

- Per TTL driven input (V_{IN} =3.4V); all other inputs at V_{CC} or GND. This parameter is not directly testable, but is derived for use in Total Power Supply calculations. $I_C = I_{QUIESCENT} + I_{INPUTS} + I_{DYNAMIC}$ $I_C = I_{CC} + \Delta I_{CC}D_HN_T + I_{CCD}(f_0/2 + f_1N_1)$ $I_{CC} = Quiescent$ Current with CMOS input levels $\Delta I_{CC} = Power$ Supply Current for a TTL HIGH input V_{IN} =3.4V) $D_H = D$ uty Cycle for TTL inputs HIGH $N_T = N$ umber of TTL inputs at $D_H = I_{CCD} = D$ Dynamic Current caused by an input transition pair HLH or LHL) $I_C = I_{CD} = I_C =$
- - Input signal frequency
 - Number of inputs changing at f₁
- All currents are in milliamps and all frequencies are in megahertz.

 11. Values for these conditions are examples of the I_{CC} formula. These limits are specified but not tested.

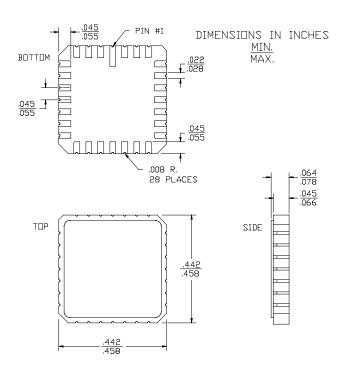
Switching Characteristics Over the Operating Range^[12]

			FCT827AT					
			Mili	tary	Comm	ercial		Fig
Parameter	Description	Test Load	Min.	Max.	Min.	Max.	Unit	Fig. No. ^[13]
t _{PLH} t _{PHL}	Propagation Delay D to Y	$C_L=50 \text{ pF}$ $R_L=500\Omega$	1.5	9.0	1.5	8.0	ns	1, 3
t _{PLH} t _{PHL}	Propagation Delay D to Y ^[12]	$C_L = 300 \text{ pF} \\ R_L = 500 \Omega$	1.5	17.0	1.5	15.0	ns	1, 3
t _{PZH}	Output Enable Time OE to Y	$C_L=50 \text{ pF}$ $R_L=500\Omega$	1.5	13.0	1.5	12.0	ns	1, 7, 8
t _{PZH}	Output Enable Time OE to Y ^[12]	$C_L = 300 \text{ pF}$ $R_L = 500\Omega$	1.5	25.0	1.5	23.0	ns	1, 7, 8
t _{PHZ}	Output Disable Time OE to Y ^[12]	$C_L=5 \text{ pF}$ $R_L=500\Omega$	1.5	9.0	1.5	9.0	ns	1, 7, 8
t _{PHZ} t _{PHL}	Output Disable Time OE to Y	$C_L=50 \text{ pF}$ $R_L=500\Omega$	1.5	10.0	1.5	10.0	ns	1, 7, 8

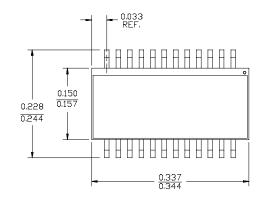
			FCT827CT			
			Comm	ercial		
Parameter	Description	Test Load	Min.	Max.	Unit	Fig. No. ^[13]
t _{PLH} t _{PHL}	Propagation Delay D to Y	C_L =50 pF R_L =500 Ω	1.5	4.4	ns	1, 3
t _{PLH} t _{PHL}	Propagation Delay D to Y ^[12]	C_L =300 pF R_L =500 Ω	1.5	10.0	ns	1, 3
t _{PZH} t _{PZL}	Output Enable Time OE to Y	C_L =50 pF R_L =500 Ω	1.5	7.0	ns	1, 7, 8
t _{PZH} t _{PZL}	Output Enable Time \overline{OE} to Y ^[12]	C_L =300 pF R_L =500 Ω	1.5	14.0	ns	1, 7, 8
t _{PHZ}	Output Disable Time OE to Y ^[12]	C_L =5 pF R_L =500 Ω	1.5	5.7	ns	1, 7, 8
t _{PHZ}	Output Disable Time OE to Y	C_L =50 pF R_L =500 Ω	1.5	6.0	ns	1, 7, 8

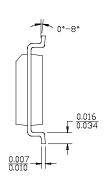
Ordering Information

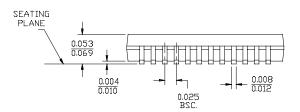
Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
4.4	CY74FCT827CTQCT	Q13	24-Lead (150-Mil) QSOP	Commercial
	CY74FCT827CTSOC/SOCT	S13	24-Lead (300-Mil) Molded SOIC	
8.0	CY74FCT827ATQCT	Q13	24-Lead (150-Mil) QSOP	Commercial
	CY74FCT827ATSOC/SOCT	S13	24-Lead (300-Mil) Molded SOIC	
9.0	CY54FCT827ATLMB	L64	28-Square Leadless Chip Carrier	Military


Minimum limits are specified but not tested on Propagation Delays.
 See "Parameter Measurement Information" in the General Information section.

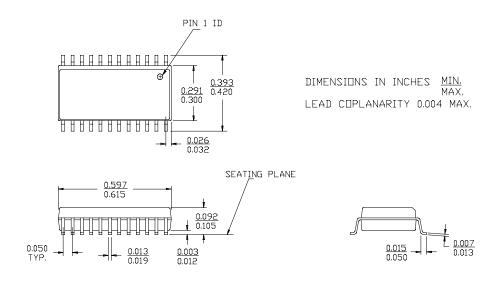
Document #: 38-00326-A




Package Diagrams


28-Square Leadless Chip Carrier L64 MIL-STD-1835 C-4

24-Lead Quarter Size Outline Q13



DIMENSIONS IN INCHES $\frac{\text{MIN.}}{\text{MAX.}}$ LEAD COPLANARITY 0.004 MAX.

Package Diagrams (continued)

24-Lead (300-Mil) Molded SOIC S13

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated