查询SN74AUC16240供应商

多邦,专业PCB打样工厂,24小时加**多N74AUC16240** 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES390E – MARCH 2002 – REVISED DECEMBER 2002

● Member of the Texas Instruments Widebus™ Family	DGG OR DGV PACKAGE (TOP VIEW)
 Optimized for 1.8-V Operation and is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation 	10E 1 48 20E 1Y1 2 47 1A1
Ioff Supports Partial-Power-Down Mode Operation	1Y2 3 46 1A2 GND 4 45 GND 1Y3 5 44 1A3
Sub 1-V Operable	1Y4 6 43 1A4
• Max t _{pd} of 2 ns at 1.8 V	V_{CC} $\begin{bmatrix} 7 & 42 \end{bmatrix}$ V_{CC}
 Low Power Consumption, 20-μA Max I_{CC} 	2Y1 [8 41] 2A1
• ±8-mA Output Drive at 1.8 V	2Y2 🛛 9 🛛 40 🗋 2A2
	GND 0 10 39 GND
Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II	2Y3 11 38 2A3
ESD Protection Exceeds JESD 22	2Y4 12 37 2A4
 – 2000-V Human-Body Model (A114-A) 	3Y1 13 36 3A1
– 200-V Machine Model (A115-A)	3Y2 14 35 3A2 GND 15 34 GND
– 1000-V Charged-Device Model (C101)	3Y3 [16 33] 3A3
	3Y4 [17 32] 3A4
description/ordering information	V_{CC} [18 31] V_{CC}
This 16-bit buffer/driver is operational at 0.8-V to	4Y1 [19 30] 4A1
$2.7-V V_{CC}$, but is designed specifically for 1.65-V	4Y2 20 29 4A2
to 1.95 -V V _{CC} operation.	GND 21 28 GND
	4Y3 [22 27] 4A3
The SN74AUC16240 is designed specifically to	4Y4 23 26 4A4
improve the performance and density of 3-state	40E 24 25 30E

The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. It provides inverting outputs and symmetrical active-low output-enable (OE) inputs.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using l_{off}. The l_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING					
	TSSOP – DGG	Tape and reel	SN74AUC16240DGGR	AUC16240					
–40°C to 85°C	TVSOP – DGV	Tape and reel	SN74AUC16240DGVR	MH240					
	VFBGA – GQL	Tape and reel	SN74AUC16240GQLR	MH240					

ORDERING INFORMATION

Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

debus is a trademark of Texas Instruments.

memory address drivers, clock drivers, and

bus-oriented receivers and transmitters.

SN74AUC16240 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES390E – MARCH 2002 – REVISED DECEMBER 2002

GQL PACKAGE

(TOP VIEW)

terminal assignments

	1	2	3	4	5	6
Α	C	\circ	С	С	С	\odot
в	C	C (С	С	\bigcirc	C
С	()	\mathcal{O}	\bigcirc	\bigcirc	\bigcirc	\bigcirc
D	()	\mathcal{O}	\bigcirc	\bigcirc	\bigcirc	С
Е	C) ()			\bigcirc	\bigcirc
F	()	C (\bigcirc	C
G	()	\mathcal{O}	\bigcirc	\bigcirc	\bigcirc	C
н	C	C (\bigcirc	\bigcirc	\bigcirc	C
J	C	C (\bigcirc	\bigcirc	\bigcirc	C
κ	C) ()	\bigcirc	\bigcirc	С	C

	1	2	3	4	5	6
Α	1 <mark>OE</mark>	NC	NC	NC	NC	2 <mark>OE</mark>
в	1Y2	1Y1	GND	GND	1A1	1A2
С	1Y4	1Y3	VCC	VCC	1A3	1A4
D	2Y2	2Y1	GND	GND	2A1	2A2
Е	2Y4	2Y3			2A3	2A4
F	3Y1	3Y2			3A2	3A1
G	3Y3	3Y4	GND	GND	3A4	3A3
н	4Y1	4Y2	V _{CC}	V _{CC}	4A2	4A1
J	4Y3	4Y4	GND	GND	4A4	4A3
κ	4OE	NC	NC	NC	NC	3 <mark>0E</mark>

NC - No internal connection

FUNCTION TABLE (each 4-bit buffer)

(each 4-bit buller)							
INP	JTS	OUTPUT					
OE	Α	Y					
L	Н	L					
L	L	Н					
н	Х	Z					

SN74AUC16240 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCES390E - MARCH 2002 - REVISED DECEMBER 2002

<u>13</u> 3Y1

- 3Y2

– 3Y3

- 3Y4

4Y1

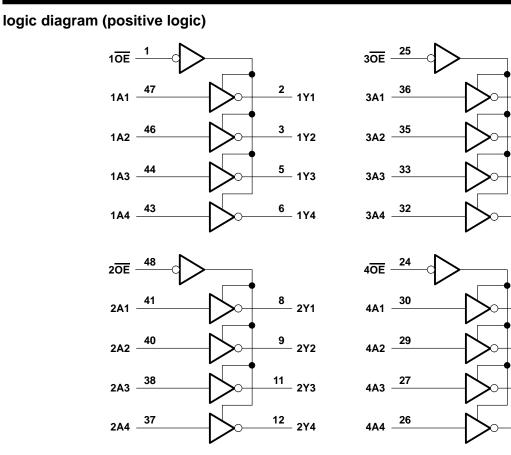
4Y2

4Y3

4Y4

14

16


17

19

20

22

23

Pin numbers shown are for the DGG and DGV packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V_{CC} Input voltage range, V_I (see Note 1) Voltage range applied to any output in the high-impedance or power-off state, V_O	–0.5 V to 3.6 V
(see Note 1)	
Output voltage range, V _O (see Note 1)	
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I_{OK} (V _O < 0)	
Continuous output current, I _O	
Continuous current through V_{CC} or GND	
Package thermal impedance, θ_{JA} (see Note 2): DGG package	
DGV package	
GQL package	
Storage temperature range, T _{stg}	

⁺ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended oper	rating conditions	s (see Note 3)
------------------	-------------------	----------------

			MIN	MAX	UNIT
VCC	Supply voltage		0.8	2.7	V
		V _{CC} = 0.8 V	V _{CC}		
VIH	High-level input voltage	V _{CC} = 1.1 V to 1.95 V	$0.65 \times V_{CC}$		V
		V_{CC} = 2.3 V to 2.7 V	1.7		
		V _{CC} = 0.8 V		0	
VIL	Low-level input voltage	V _{CC} = 1.1 V to 1.95 V		$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V		0.7	
VI	Input voltage		0	3.6	V
VO	Output voltage		0	VCC	V
		V _{CC} = 0.8 V		-0.7	
	High-level output current	V _{CC} = 1.1 V		-3	mA
ЮН		V _{CC} = 1.4 V		-5	
		V _{CC} = 1.65 V		-8	
		V _{CC} = 2.3 V		-9	
		V _{CC} = 0.8 V		0.7	
		V _{CC} = 1.1 V		3	
IOL	Low-level output current	V _{CC} = 1.4 V		5	mA
		V _{CC} = 1.65 V		8	
		V _{CC} = 2.3 V		9	
		V _{CC} = 0.8 V, 1.3 V		20	
$\Delta t / \Delta v$	Input transition rise or fall rate	V _{CC} = 1.6 V, 1.95 V		10	ns/V
		$V_{CC} = 2.7 V$		5	
Τ _Α	Operating free-air temperature		-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74AUC16240 **16-BIT BUFFER/DRIVER** WITH 3-STATE OUTPUTS SCES390E – MARCH 2002 – REVISED DECEMBER 2002

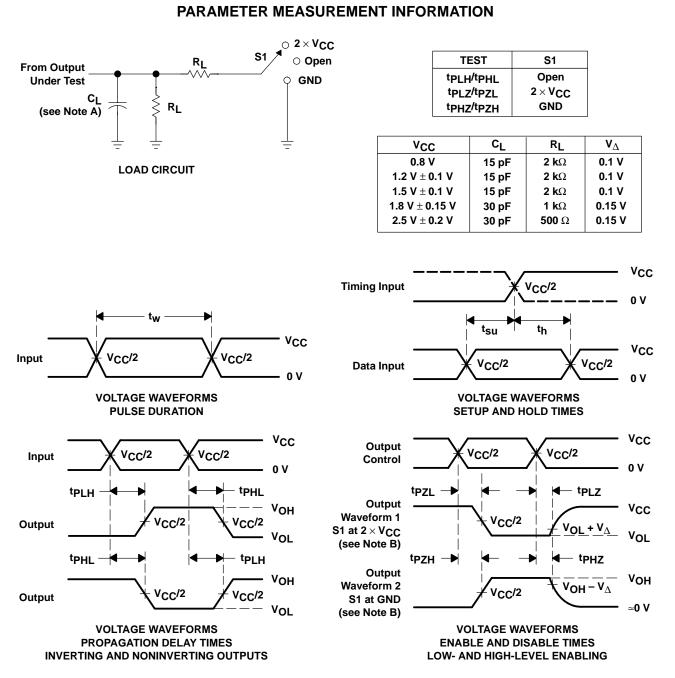
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	Vcc	MIN	TYP†	MAX	UNIT
	I _{OH} = -100 μA	0.8 V to 2.7 V	V _{CC} -0.1			
	$I_{OH} = -0.7 \text{ mA}$	0.8 V		0.55		
Vou	$I_{OH} = -3 \text{ mA}$	1.1 V	0.8			V
VOH	I _{OH} = -5 mA	1.4 V	1			v
	$I_{OH} = -8 \text{ mA}$	1.65 V	1.2			
	$I_{OH} = -9 \text{ mA}$	2.3 V	1.8			
	I _{OL} = 100 μA	0.8 V to 2.7 V			0.2	
	I _{OL} = 0.7 mA	0.8 V		0.25		
Ve	I _{OL} = 3 mA	1.1 V			0.3	V
VOL	I _{OL} = 5 mA	1.4 V			0.4	v
	I _{OL} = 8 mA	1.65 V			0.45	
	I _{OL} = 9 mA	2.3 V			0.6	
I A or OE inputs	$V_I = V_{CC}$ or GND	0 to 2.7 V			±5	μA
l _{off}	$V_{I} \text{ or } V_{O} = 2.7 \text{ V}$	0			±10	μA
I _{OZ}	$V_{O} = V_{CC}$ or GND	2.7 V			±10	μA
ICC	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	0.8 V to 2.7 V			20	μA
C _i	$V_{I} = V_{CC}$ or GND	2.5 V		3	4	pF
Co	$V_{O} = V_{CC}$ or GND	2.5 V	1	5.5	6	pF

[†] All typical values are at $T_A = 25^{\circ}C$.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 0.8 V	V _{CC} = ± 0.	: 1.2 V 1 V	V _{CC} = ± 0.			C = 1.8 0.15 V		V _{CC} = ± 0.		UNIT
	(INFOT)	(001701)	TYP	MIN	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
^t pd	А	Y	5.9	0.9	2.6	0.7	1.8	0.6	1.4	2	0.4	1.6	ns
ten	OE	Y	7.9	1.2	3.8	0.8	2.5	0.7	1.5	2.5	0.7	2	ns
^t dis	OE	Y	9.3	2.1	6	1.5	4.8	1.8	2.7	4.5	0.6	2.3	ns


operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER		TEST	V _{CC} = 0.8 V	V _{CC} = 1.2 V	V _{CC} = 1.5 V	V _{CC} = 1.8 V	V _{CC} = 2.5 V	UNIT
			CONDITIONS	TYP	ТҮР ТҮР		TYP	ТҮР	U
	Power	Outputs enabled	f = 10 MHz	24	24	25	26	30	рF
Cpd	C _{pd} dissipation capacitance	Outputs disabled		2	2	2	3	4	ΡΓ

SN74AUC16240 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

SCES390E – MARCH 2002 – REVISED DECEMBER 2002

NOTES: A. C_L includes probe and jig capacitance.

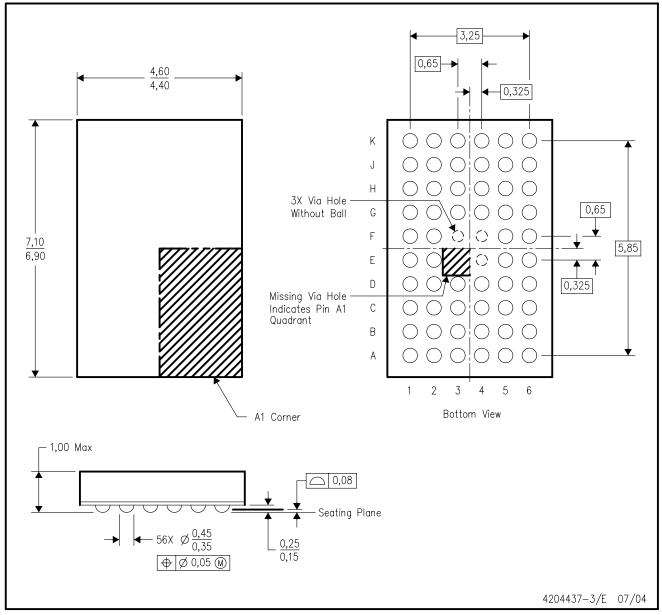

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, slew rate ≥ 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

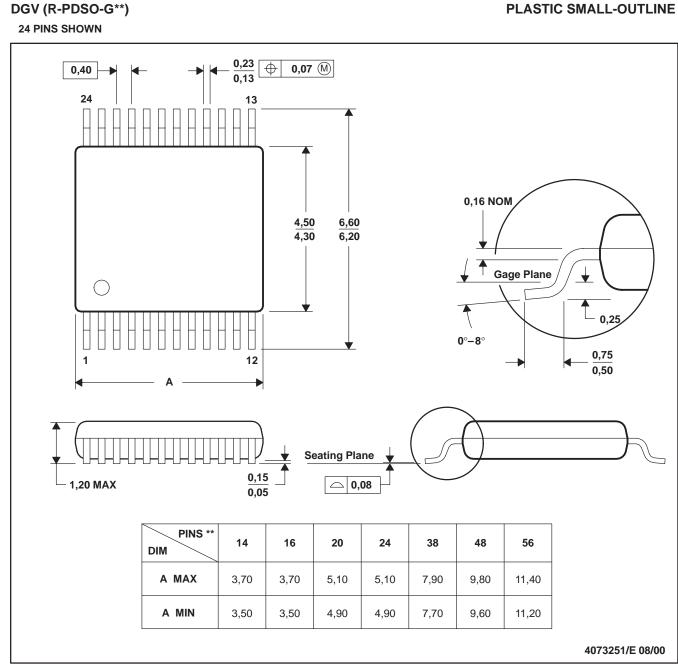
Figure 1. Load Circuit and Voltage Waveforms

ZQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES:

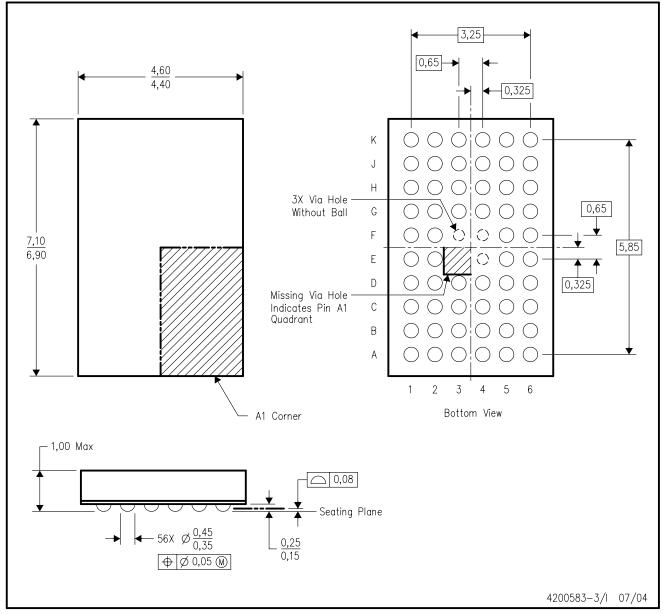
A. All linear dimensions are in millimeters.


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225 variation BA.
- D. This package is lead-free. Refer to the 56 GQL package (drawing 4200583) for tin-lead (SnPb).

MECHANICAL DATA

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

PLASTIC SMALL-OUTLINE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153
 - 14/16/20/56 Pins MO-194

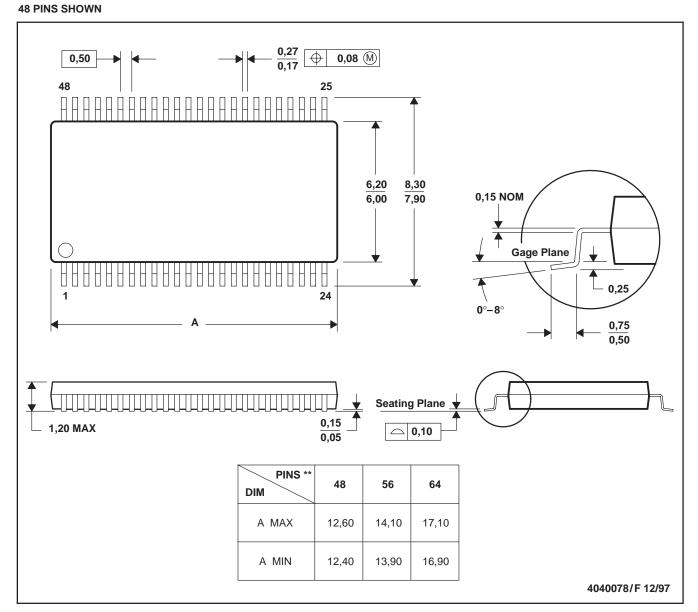
GQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES:

A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-225 variation BA.
- D. This package is tin-lead (SnPb). Refer to the 56 ZQL package (drawing 4204437) for lead-free.



MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

PLASTIC SMALL-OUTLINE PACKAGE

DGG (R-PDSO-G**)

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated