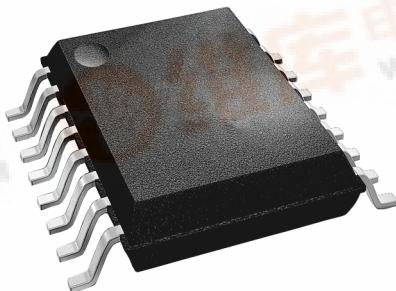


[查询AWT4502S10供应商](#)

捷多邦，专业PCB打样工厂，24小时加急出货

AWT4502S10
TX Power MMIC


Advanced Product Information - Rev 0

FEATURES

- High Linearity.
- Low Quiescent Current.
- Intelligent Power Management™ with Temperature Compensation.
- Low Harmonics.
- Small Size.
- 16 Pin SSOP Plastic Package.
- Surface Mount Package
- 50Ω Input Impedance
- Low Cost

APPLICATIONS

- PCS CDMA/TDMA Wireless handset applications.

S10
16 Pin SSOP with Heat Slug

Description

The AWT4502 is a monolithic power amplifier IC suited for 3 Volt PCS CDMA/TDMA wireless handset applications.

Maximum Ratings

Static sensitive electronic devices. Do not operate or store near strong electrostatic, fields. Take proper ESD precautions.

PIN	DESCRIPTION	RATING	NOTES
1	V_{D1}	+8V max, 0.0V min	With no RF Applied
2	RF_{IN}	+12 dBm max	$V_D = +5.0$ Volts
3	V_{REF}	+5V max, 0.0V min	Must be presented during operation.
4	V_{DDC}	+7.5V max, 0.0V min	
8	V_{SS}	(-) 5V	
9	V_{D2}	+8V max, 0.0V min	With no RF Applied
11, 12, 13, 14	V_{D3}	+8V max, 0.0V min	With no RF Applied

AWT4502S10

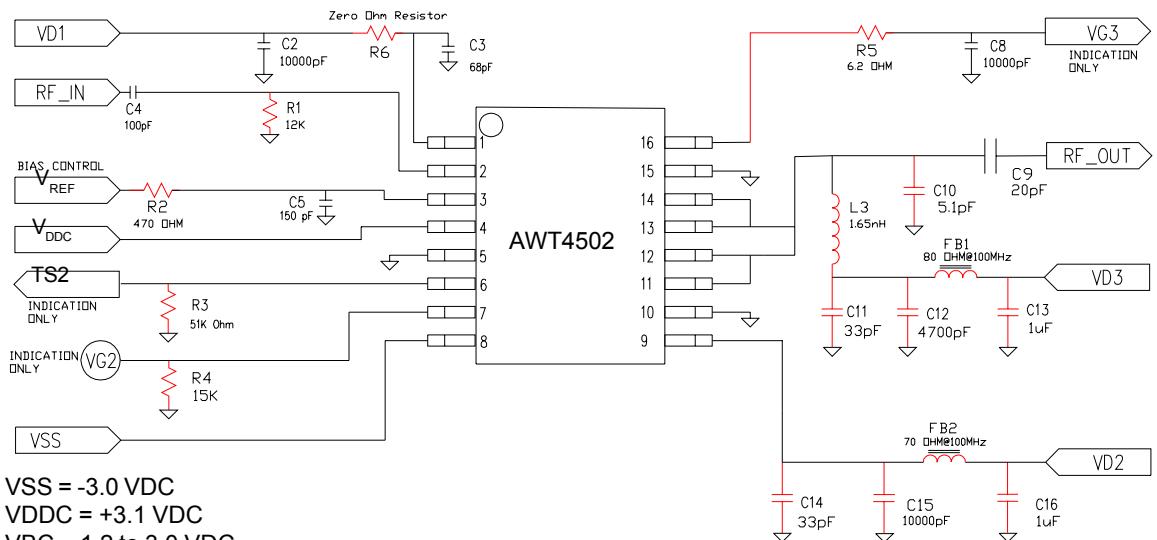
Electrical Characteristics

(Pin \leq 3dBm, V_{DS} 1, 2, 3 = +3.5 V; V_{DDC} = 3.1V; V_{SS} = (-) 3V, Set V_{REF} (Pin 3) to get IDQ of 140mA; $TC = 25^{\circ}C$, 50Ω Input 50Ω external output match)*

Parameter	Symbol	Min	Typ	Max	Unit
Frequency	f_0	1850	-	1910	MHz
Power Output	P_{out}	28.5	-	-	dBm
Intermodulation Distortion	IM3 IM5 IM7	-	-26 -36 -45	-	dBc
Power Added Efficiency @ $P_{out} = 28.5$ dBm	PAE	-	32	-	%
Gain	-	-	26	-	dB
Harmonics (@ 28.5dBm)	2 f_0 3 f_0 4 f_0	-	<-45 <-40 <-40	-	dBc
Stability: -80dBc all spurious outputs relative to desired signal	-	-	6:1	-	VSWR load, all phase angles, ($P_{out} < 28.5$ dBm) $V_{DS} = +3.4$, $Z_s = 50\Omega$
Input Return Loss	RTN_{IN}	-	12	-	dB
Operating Range	T_c	-20		+70	°C
Negative Voltage Current	I_{SS}	-	3	-	mA
Biassing Current (V_{DDC} Pin)	I_{DDC}	-	2.5	-	mA
Biassing Current (V_{REF} Pin)	I_{REF}	-	1.5	-	mA
Quiescent Current ($I_{DSQ1} + I_{DSQ2} + I_{DSQ3}$)	I_{DSQ}	-	140	-	mA

* As measured in ANADIGICS test fixture.

Recommended Operating Procedure on the Evaluation Board

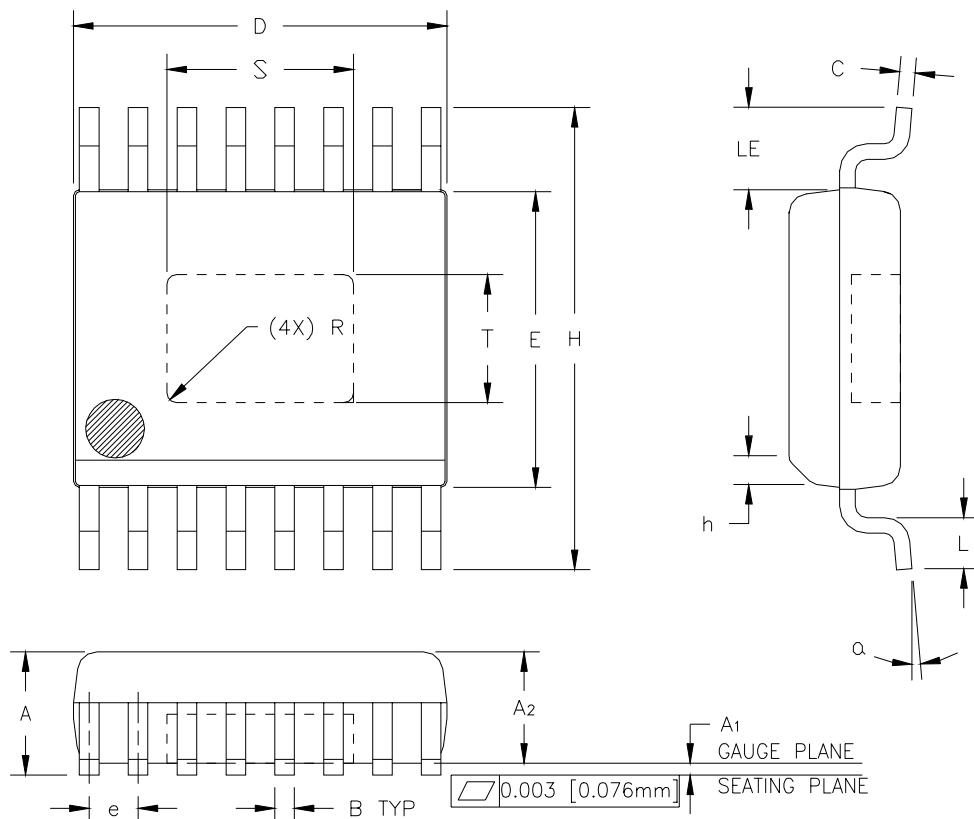

Power Up

- Begin by setting all power supplies to 0.0 Volts, and input power to 0 dBm.
- Make sure that the RF input power is turned off.
- Turn on V_{SS} (Pin 3) to (-) 3V.
- Turn V_{DS1} (Pin 1), V_{DS2} (Pin 9), V_{DS3} (Pins 11, 12, 13 and 14) and V_{DDC} (Pin 4) which are tied together on the fixture, and set to +3.5V and set V_{REF} (Pin 3) for I_{DQ} of 140 mA
- Turn RF on and adjust input power to get $P_{out} = 28.5$ dBm.

Power Down

To power down the device follow the above procedure in reverse order.

AWT4502 Fixture Schematic


VSS = -3.0 VDC
 VDDC = +3.1 VDC
 VBC = 1.2 to 3.0 VDC
 VD1, VD2, VD3 = 3.5 VDC

Pin	Signal	Description
1	V _{D1}	Drain of the 1 st stage (+3.5V)
2	RF _{IN}	RF power input, DC blocked
3 *	V _{REF}	Part of biasing control circuit should be set to get IDQ of 140mA
4	V _{DDC}	Bias circuit supply (+3.1V)
5	GND	RF and DC Ground
6	V _{TS2}	Dynamic Bias Resistor
8	V _{SS}	Negative supply (-3V)
9	V _{D2}	Drain of the 2 nd stage (+3.5V)
10, 15	GND	RF and DC ground
11, 12, 13, 14	V _{D3} /RF _{OUT}	Drain of 3 rd stage (+3.5V) and RF _{OUT}
16	V _{G3}	Gate of 1 st stage (bias indication and tuning)

*This voltage is being adjusted to get IDQ of 140mA, the voltage range is 1.2-3V.

AWT4502S10

CASE OUTLINE AND PIN DESCRIPTION

S _Y _M _{B₀_L}	INCHES		MILLIMETERS		NOTE
	MIN.	MAX.	MIN.	MAX.	
A	0.053	0.068	1.35	1.73	
A ₁	0.000	0.004	0.00	0.10	6
A ₂	0.052	0.064	1.32	1.63	
B	0.008	0.012	0.20	0.30	
C	0.006	0.009	0.15	0.23	
D	0.191	0.196	4.85	4.98	2
E	0.147	0.157	3.73	3.99	3
e	0.025	BSC	0.63	BSC	4
H	0.228	0.246	5.79	6.25	
h	0.014	0.016	0.36	0.41	
L	0.016	0.040	0.41	1.02	
LE	0.036	0.049	0.91	1.25	
Q	0°	8°	0°	8°	
S	0.070	0.100	1.78	2.54	5
T	0.040	0.070	1.02	1.78	5
R	0.015	REF.	0.38	REF.	5

NOTES:

1. CONTROLLING DIMENSION: INCHES
2. DIMENSION "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.006 [0.15mm] PER SIDE.
3. DIMENSION "E" DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.010 [0.25mm] PER SIDE.
4. MAXIMUM LEAD TWIST/SKEW TO BE 0.002 [0.05mm]
5. DIMENSION "S", "T" AND "R" INDICATE EXPOSED SLUG AREA.
6. A₁ STAND OFF IS MEASURED FROM BOTTOM OF HEAT SLUG TO THE SEATING PLANE.

NOTES

AWT4502S10

NOTES

NOTES

ANADIGICS, Inc.
35 Technology Drive
Warren, New Jersey 07059
Tel: (908) 668-5000
Fax: (908) 668-5132

<http://www.anadigics.com>
Mktg@anadigics.com

IMPORTANT NOTICE

ANADIGICS, Inc. reserves the right to make changes to its products or discontinue any product at any time without notice. The Advanced Product data sheets and product specifications contained in this data sheet are subject to change prior to a products formal introduction. The information in this data sheet has been carefully checked and is assumed to be reliable. However, ANADIGICS assumes no responsibility for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

WARNING

ANADIGICS products are not intended for use in life support appliances, devices, or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.