SILICON MMIC 1st FREQUENCY DOWN－CONVERTER FOR CELLULAR／CORDLESS TELEPHONE

DESCRIPTION

The $\mu \mathrm{PC} 8112 \mathrm{~TB}$ is a silicon monolithic integrated circuit designed as 1st frequency down－converter for cellular／cordless telephone receiver stage．This IC consists of mixer and local amplifier．The μ PC8112TB features high impedance output of open collector．Similar ICs of the $\mu \mathrm{PC} 2757 \mathrm{~TB}$ and $\mu \mathrm{PC} 2758 \mathrm{~TB}$ feature low impedance output of emitter follower．These TB suffix ICs which are smaller package than conventional T suffix ICs contribute to reduce your system size．

The $\mu \mathrm{PC} 8112 \mathrm{~TB}$ is manufactured using NEC＇s 20 GHz fT NESAT ${ }^{\text {TM }}$ III silicon bipolar process．This process uses silicon nitride passivation film and gold electrodes．These materials can protect chip surface from external pollution and prevent corrosion／migration．Thus，this IC has excellent performance，uniformity and reliability．

FEATURES

－Excellent RF performance $\begin{aligned}: & \\ & \mathrm{IP}_{3}=-7 \mathrm{dBm} @ \mathrm{fRFin}^{2}=1.9 \mathrm{GHz} \text {（reference）} \\ & \mathrm{IM}_{3}=-88 \mathrm{dBc@} @ P_{\text {RFin }}=-38 \mathrm{dBm}, 1.9 \mathrm{GHz} \text {（reference）}\end{aligned}$
－Similar conversion gain to $\mu \mathrm{PC} 2757$ and lower noise figure than $\mu \mathrm{PC} 2758$
－Minimized carrier leakage $:$ RFlo $=-80 \mathrm{~dB} @ f_{\text {fFin }}=900 \mathrm{MHz}$（reference） RF $_{\text {lo }}=-55 \mathrm{~dB} @ f_{\text {RFin }}=1.9 \mathrm{GHz}$（reference）
－High linearity ：Po（sat）$=-2.5 \mathrm{dBm}$ TYP．＠fRFin $=900 \mathrm{MHz}$
$\mathrm{Po}{ }_{\text {（sat）}}=-3 \mathrm{dBm}$ TYP．＠frFin $=1.9 \mathrm{GHz}$
－Low current consumption ：Icc $=8.5 \mathrm{~mA}$ TYP．
－Supply voltage ：Vcc＝2．7 to 3.3 V
－High－density surface mounting ：6－pin super minimold package

APPLICATIONS

－1．5 GHz to 1．9 GHz cellular／cordless telephone（PHS，DECT，PDC1．5G and so on）
－ 800 MHz to 900 MHz cellular telephone（PDC800M and so on）

ORDER INFORMATION

Part Number	Package	Markings	Supplying Form
μ PC8112TB－E3	6－pin super minimold	C2K	Embossed tape 8 mm wide． Pin 1，2，3 face the tape perforation side． Qty 3kpcs／reel．

Remark To order evaluation samples，please contact your local NEC sales office．
（Part number for sample order：μ PC8112TB）

Caution Electro－static sensitive devices

[^0]
PIN CONNECTIONS

Pin No.	Pin Name
1	RFinput
2	GND
3	LOinput
4	PS
5	Vcc
6	IFoutput

PRODUCT LIN-UP ($\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathbf{3 . 0} \mathrm{V}, \mathrm{Z}_{\mathrm{s}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega$)

\qquad	$\begin{gathered} \text { No RF } \\ \text { Icc } \\ \text { (mA) } \end{gathered}$	900 MHz SSB • NF (dB)	1.5 GHz SSB • NF (dB)	1.9 GHz SSB • NF (dB)	900 MHz CG (dB)	$\begin{gathered} 1.5 \mathrm{GHz} \\ \mathrm{CG} \\ \text { (dB) } \end{gathered}$	1.9 GHz CG (dB)	900 MHz IIP3 (dBm)	$\begin{gathered} 1.5 \mathrm{GHz} \\ \quad \mathrm{IP} 3 \\ (\mathrm{dBm}) \end{gathered}$	$\begin{gathered} 1.9 \mathrm{GHz} \\ \mathrm{IIP}_{3} \\ (\mathrm{dBm}) \end{gathered}$
$\mu \mathrm{PC} 2757 \mathrm{~T}$	5.6	10	10	13	15	15	13	-14	-14	-12
$\mu \mathrm{PC} 2757 \mathrm{~TB}$										
$\mu \mathrm{PC} 2758 \mathrm{~T}$	11	9	10	13	19	18	17	-13	-12	-11
$\mu \mathrm{PC} 2758 \mathrm{~TB}$										
$\mu \mathrm{PC} 8112 \mathrm{~T}$	8.5	9	11	11	15	13	13	-10	-9	-7
μ PC8112TB										

Items	900 MHz Po (sat) (dBm)	1.5 GHz Po (sat) (dBm)	1.9 GHz Po (sat) (dBm)	900 MHz RFıo (dB)	1.5 GHz RFıo (dB)	1.9 GHz RFıo (dB)	IF Output Configuration	Package
$\mu \mathrm{PC} 2757 \mathrm{~T}$	-3	-	-8	-	-	-	Emitter follower	6-pin minimold
μ PC2757TB								6-pin super minimold
$\mu \mathrm{PC} 2758 \mathrm{~T}$	+1	-	-4	-	-	-		6-pin minimold
$\mu \mathrm{PC} 2758 \mathrm{~TB}$								6 -pin super minimold
$\mu \mathrm{PC} 8112 \mathrm{~T}$	-2.5	-3	-3	-80	-57	-55	Open collector	6-pin minimold
μ PC8112TB								6 -pin super minimold

Remark Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.

Caution 1. The $\mu \mathrm{PC} 2757$ and $\mu \mathrm{PC} 2758$'s IIP_{3} are calculated with $\Delta \mathrm{I} \mathrm{M}_{3}=3$ which is the same IM 3 inclination as μ PC8112. On the other hand, OIP_{3} of Standard characterisitcs in page 6 is cross point IP.
2. This document is to be specified for $\mu \mathrm{PC} 8112 \mathrm{~TB}$. The other part number mentioned in this document should be referred to the data sheet of each part number.

INTERNAL BLOCK DIAGRAM

μ PC8112TB LOCATION EXAMPLE IN THE SYSTEM

Digital cordless phone

PIN EXPLANATION

Pin No.	Pin Name	Applied Voltage (V)	Pin Voltage (V)	Function and Application	Internal Equivalent Circuit
1	RFinput	-	1.2	RF input pin of mixer. This mixer is designed as double balanced type. This pin should be externally coupled to front stage with DC cut capacitor.	
2	GND	0	-	Ground pin. This pin must be connected to the system ground. Form the ground pattern as wide as possible and the truck length as short as possible to minimize ground impedance.	
5	Vcc	2.7 to 3.3	-	Supply voltage pin. This pin should be connected with bypass capacitor (example: 1000 pf) to minimize ground impedance.	
6	IFoutput	as same as Vcc voltage through external inductor	-	IF output pin. This output is configured with open collector of high impedance. This pin should be externally equipped with matching circuit of inductor should be selected as small resistance and high frequency use.	
3	LOinput	-	1.4	Input pin of local amplifier. This amplifier is designed as differential type. This pin should be externally coupled to local signal source with DC cut capacitor. Recommendable input level is -15 to 0 dBm .	
4	PS	Vcc or GND	-	Power save control pin. This pin can control ON/OFF operation with bias as follows;	

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Ratings	Unit
Supply Voltage	V_{cc}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 5$ pin and 6 pin	3.6	V
Total Circuit Current	Icc	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	77.7	mA
Total Power Dissipation	PD	Mounted on double sided copper clad $50 \times 50 \times$ 1.6 mm epoxy glass $\mathrm{PWB}\left(\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}\right)$	200	mW
Operating Ambient Temperature	T_{A}		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{stg}}$		-55 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Remark
Supply Voltage	Vcc	2.7	3.0	3.3	V	5 pin and 6 pin should be applied to same voltage.
Operating Ambient Temperature	TA	-40	+25	+85	${ }^{\circ} \mathrm{C}$	
LO Input Level	PLoin	-15	-10	0	dBm	$\mathrm{Zs}=50 \Omega$
RF Input Frequency	f frin	0.8	1.9	2.0	GHz	
IF Output Frequency	fifout	100	250	300	MHz	With external matching

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, $\mathrm{Vcc}=\mathrm{Vps}_{\mathrm{P}}=\mathrm{V}_{\text {IFout }}=3.0 \mathrm{~V}$, $P_{\text {Loin }}=\mathbf{- 1 0} \mathbf{d B m}, \mathrm{Zs}=\mathrm{ZL}=50 \Omega$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	Icc	No signals	4.9	8.5	11.7	mA
Circuit Current at Power Save Mode	Icc(PS)	$\mathrm{V} \mathrm{cc}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {PS }}=0.5 \mathrm{~V}$	-	-	0.1	$\mu \mathrm{A}$
Conversion Gain	CG	$\begin{aligned} & f_{\text {fFin }}=900 \mathrm{MHz}, f_{L O i n}=1000 \mathrm{MHz} \\ & f_{\text {RFin }}=1.9 \mathrm{GHz}, f_{\text {Loin }}=1.66 \mathrm{GHz} \end{aligned}$	$\begin{gathered} 11.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 15.5 \\ & \hline \end{aligned}$	dB
Single Side Band Noise Figure	SSB•NF	$\begin{aligned} & f_{\text {frin }}=900 \mathrm{MHz}, \mathrm{fLOin}=1000 \mathrm{MHz} \\ & \mathrm{f}_{\text {RFin }}=1.9 \mathrm{GHz}, \mathrm{fLOin}=1.66 \mathrm{GHz} \end{aligned}$	-	$\begin{gathered} 9.0 \\ 11.2 \end{gathered}$	$\begin{gathered} 11 \\ 13.2 \end{gathered}$	dB
Saturated Output Power	Po (sat)	$\begin{aligned} & f_{\text {RFin }}=900 \mathrm{MHz}, f_{\text {LOin }}=1000 \mathrm{MHz} \\ & f_{\text {RFin }}=1.9 \mathrm{GHz}, \mathrm{f} \text { LOin }=1.66 \mathrm{GHz} \\ & (\text { PRFFin }=-10 \mathrm{dBm} \text { each }) \end{aligned}$	$\begin{gathered} -6.5 \\ -7 \end{gathered}$	$\begin{gathered} -2.5 \\ -3 \end{gathered}$	-	dBm

STANDARD CHARACTERISTICS FOR REFERENCE

Parameter	Symbol	Test Conditions	Reference	Unit
Conversion Gain	CG	$\mathrm{frFin}=1.5 \mathrm{GHz}$, $\mathrm{fLOin}=1.6 \mathrm{GHz}$	13	dB
Single Side Band Noise Figure	SSB•NF	$\mathrm{f}_{\text {frin }}=1.5 \mathrm{GHz}$, fLoin $=1.6 \mathrm{GHz}$	11	dB
LO Leakage at RF pin	LOrf	$\begin{aligned} & f_{\text {fRFin }}=900 \mathrm{MHz}, \mathrm{fLOin}=1000 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{fRFin}}=1.5 \mathrm{GHz}, \mathrm{f}_{\mathrm{LOin}}=1.6 \mathrm{GHz} \\ & \mathrm{f}_{\text {RFin }}=1.9 \mathrm{GHz}, \mathrm{f} \text { Loin }=1.66 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & -45 \\ & -46 \\ & -45 \end{aligned}$	dB
RF Leakage at LO pin	RFıo	$\begin{aligned} & \mathrm{f}_{\text {RFin }}=900 \mathrm{MHz}, \mathrm{f} \text { Loin }=1000 \mathrm{MHz} \\ & \mathrm{f}_{\text {RFin }}=1.5 \mathrm{GHz}, \mathrm{f}_{\mathrm{LOin}}=1.6 \mathrm{GHz} \\ & \mathrm{f}_{\text {RFin }}=1.9 \mathrm{GHz}, \mathrm{fLoin}=1.66 \mathrm{GHz} \end{aligned}$	$\begin{array}{r} -80 \\ -57 \\ -55 \\ \hline \end{array}$	dB
LO Leakage at IF pin	LOif	$\begin{aligned} & \mathrm{f}_{\text {RFin }}=900 \mathrm{MHz}, \mathrm{f} \text { LOin }=1000 \mathrm{MHz} \\ & \mathrm{f}_{\text {RFin }}=1.5 \mathrm{GHz}, \mathrm{f}_{\mathrm{LOin}}=1.6 \mathrm{GHz} \\ & \mathrm{f}_{\text {RFin }}=1.9 \mathrm{GHz}, \mathrm{f} \text { Loin }=1.66 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & -32 \\ & -33 \\ & -30 \\ & \hline \end{aligned}$	dB
Input 3rd Order Intercept Point ${ }^{\text {Note }}$	$11 \mathrm{P}_{3}$	$\begin{aligned} & f_{\text {RFFin }}=900 \mathrm{MHz}, f_{\text {LOin }}=1000 \mathrm{MHz} \\ & f_{\text {RFFin }}=1.5 \mathrm{GHz}, \mathrm{f} \text { LOin }=1.6 \mathrm{GHz} \\ & f_{\text {RFin }}=1.9 \mathrm{GHz}, f_{\text {Loin }}=1.66 \mathrm{GHz} \end{aligned}$	$\begin{gathered} -10 \\ -9 \\ -7 \end{gathered}$	dBm

Note IIP_{3} is determined by comparing two method; theoretical calculation and cross point of IM_{3} curve. $\mathrm{IIP}_{3}=\left(\Delta \mathrm{I} \mathrm{M}_{3} \times \operatorname{Pin}+\mathrm{CG}-\mathrm{IM} 3\right) \div\left(\Delta \mathrm{I} \mathrm{M}_{3}-1\right)(\mathrm{dBm})\left[\Delta \mathrm{IM}_{3}: \mathrm{IM}_{3}\right.$ curve inclination in linear range $]$ $\mu \mathrm{PC} 8112$'s $\Delta \mathrm{IM} 3$ is closer to 3 (theoretical inclination) than $\mu \mathrm{PC} 2757$ and $\mu \mathrm{PC} 2758$ of conventional ICs.

TEST CIRCUIT

ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

Component Number	IF 100 MHz Matching	IF 240 MHz Matching	Remarks
C_{1} to C_{5}	1000 pF	1000 pF	CHIP C
C_{6}	5 pF	2 pF	CHIP C
L_{1}	330 nH	84 nH	CHIPL

EVALUATION BOARD CHARACTERS AND NOTE

(1) $35 \mu \mathrm{~m}$ thick double-sided copper clad $35 \times 42 \times 0.4 \mathrm{~mm}$ polyimide board
(2) Back side: GND pattern
(3) Solder plated patterns
(4) ○O: Through holes
(5) To mount C_{6}, pattern should be cut.

CAUTION Test circuit or print pattern in this sheet is for testing IC characteristics. They are not an application circuit or recommended system circuit.
In the case of actual system application, external circuits including print pattern and matching circuit constant of output port should be designed in accordance with IC's S-parameters and environmental components.

Remark External circuits of the IC can be referred to following application notes.

- USAGE AND APPLICATION CHARACTERISTICS OF $\mu \mathrm{PC} 2757, \mu \mathrm{PC} 2758$, AND $\mu \mathrm{PC} 8112$, 3-V POWER SUPPLY, 1.9-GHz FREQUENCY DOWN-CONVERTER ICS FOR MOBILE COMMUNICATION (Document No. P11997E)
\star TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C}\right.$, unless otherwise specified, measured on test circuits)
-Without Signals-

S-PARAMETERS

-Calibrated on pin of DUT-

LO PORT

$\begin{array}{ll}\mathrm{Vcc}=3.0 \mathrm{~V} & \mathrm{VPS}=\mathrm{GND} \\ 1: 500 \mathrm{MHz} & 135.53 \Omega-\mathrm{j} 575.06 \Omega\end{array}$ 2:900 MHz $78.266 \Omega-j 337.66 \Omega$
3:1500 MHz $55.883 \Omega-j 201.43 \Omega$
4:1900 MHz $52.734 \Omega-j 159.63 \Omega$
5:2 $500 \mathrm{MHz} \quad 44.262 \Omega-\mathrm{j} 122.66 \Omega$

* S-PARAMETERS OF IF OUTPUT MATCHING (Vcc = Vps $=\mathrm{V}_{\text {IFout }}=3.0 \mathrm{~V}$) -ON TEST CIRCUIT(This S_{11} is monitored at IF connector on test circuit fixture)

IF $100 \mathbf{M H z}$ MATCHING

START 50.000000 MHz
STOP 3000.000000 MHz
START 50.000000 MHz
STOP 3000.000000 MHz

The data in this page are to make clear the test condition of impedance matched to next stage, not specify the recommended condition. The S_{11} smith charts of the test fixture setting IC are normalized to $\mathrm{Zo}_{0}=50 \Omega$, because the IC's load is the measurement equipment of 50Ω impedance.

In your use, the output return loss value can be helpful information to adjust your circuit matching to next stage.

* IF 100 MHz MATCHING

IF OUTPUT LEVEL vs. RF INPUT LEVEL

* IF 100 MHz MATCHING

3rd ORDER INTERMODULATION DISTORTION, IF OUTPUT LEVEL OF EACH TONE vs. RF OUTPUT LEVEL

IF OUTPUT LEVEL vs. RF INPUT LEVEL

CONVERSION GAIN vs. LO INPUT POWER

* IF 100 MHz MATCHING

SSB NOISE FIGURE vs. LO INPUT LEVEL

« IF 240 MHz MATCHING

* IF 240 MHz MATCHING

Remark The graphs indicate nominal characteristics.

PACKAGE DIMENSIONS

6 pin super minimold (Unit: mm)

NOTE ON CORRECT USE

(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation). Keep the track length of the ground pins as short as possible.
(3) The bypass capacitor (e.g. 1000 pF) should be attached to the Vcc pin.
(4) The matching circuit should be externally attached to the IF output pin.
(5) The DC cut capacitor must be each attached to the input and output pins.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Soldering Method	\quad Soldering Conditions	Recommended Condition Symbol
Infrared Reflow	Package peak temperature: $235^{\circ} \mathrm{C}$ or below Time: 30 seconds or less (at $210^{\circ} \mathrm{C}$) Count: 3, Exposure limit: None	
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$ or below Time: 40 seconds or less (at $200^{\circ} \mathrm{C}$) Count: 3, Exposure limit: None	
Wave Soldering	Soldering bath temperature: $260^{\circ} \mathrm{C}$ or below Time: 10 seconds or less Count: 1, Exposure limit: None ${ }^{\text {Note }}$	VP15-00-3
Partial Heating	Pin temperature: $300^{\circ} \mathrm{C}$ Time: 3 seconds or less (per side of device) Exposure limit: None ${ }^{\text {Note }}$	WS60-00-1

Note After opening the dry pack, keep it in a place below $25^{\circ} \mathrm{C}$ and 65% RH for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).
[MEMO]

NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.

- The information in this document is current as of June, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

[^0]: The information in this document is subject to change without notice．Before using this document，please confirm that this is the latest version．
 Not all devices／types available in every country．Please check with local NEC representative for availability and additional information．

