

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC8172TB$

SILICON MMIC 2.5 GHz FREQUENCY UP-CONVERTER FOR WIRELESS TRANSCEIVER

DESCRIPTION

The μ PC8172TB is a silicon monolithic integrated circuit designed as frequency up-converter for wireless transceiver transmitter stage. This IC is manufactured using NEC's 30 GHz fmax. UHS0 (<u>Ultra High Speed Process</u>) silicon bipolar process.

This IC is as same circuit current as conventional μ PC8106TB, but operates at higher frequency, higher gain and lower distortion. Consequently this IC is suitable for mobile communications.

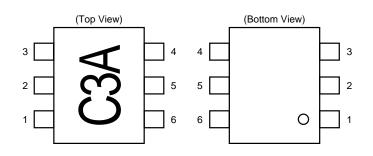
FEATURES

٠	Recommended operating frequency	: fRFout = 0.8 to 2.5 GHz
•	Higher IP3	: CG = 9.5 dB TYP., OIP ₃ = +7.5 dBm TYP. @ f_{RFout} = 0.9 GHz
٠	High-density surface mounting	: 6-pin super minimold package
•	Supply voltage	: Vcc = 2.7 to 3.3 V

APPLICATIONS

- PCS1900M
- 2.4 GHz band transmitter/receiver system (wireless LAN etc.)

ORDERING INFORMATION


Part Number	Package	Marking	Supplying Form
μPC8172TB-E3	6-pin super minimold	C3A	Embossed tape 8 mm wide.Pin 1, 2, 3 face the tape perforation side.Qty 3 kpcs/reel.

Remark To order evaluation samples, please contact your local NEC sales office. (Part number for sample order: μ PC8172TB)

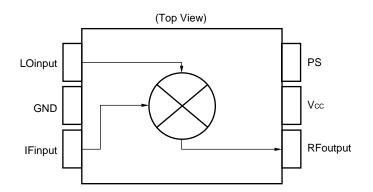
Caution Electro-static sensitive devices

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

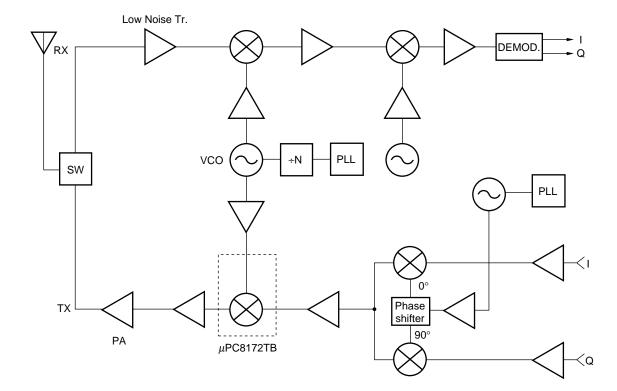
PIN CONNECTIONS

Pin No.	Pin Name	
1	IFinput	
2	GND	
3	LOinput	
4	PS	
5	Vcc	
6	RFoutput	

SERIES PRODUCTS (T_A = +25°C, V_{CC} = V_{PS} = V_{RFout} = 3.0 V, Z_S = Z_L = 50 Ω)


Part Number	Icc frefout		CG (dB)				
Part Number	(mA)	(GHz)	@RF 0.9 GHz ^{№te}	@RF 1.9 GHz	@RF 2.4 GHz		
μPC8172TB	9	0.8 to 2.5	9.5	8.5	8.0		
μPC8106TB	9	0.4 to 2.0	9	7	_		
μPC8109TB	5	0.4 to.2.0	6	4	_		
μPC8163TB	16.5	0.8 to 2.0	9	5.5	_		

Part Number		Po(sat) (dBm)		OIP3 (dBm)			
Part Number	@RF 0.9 GHz ^{Note}	@RF 1.9 GHz	@RF 2.4 GHz	@RF 0.9 GHz ^{Note}	@RF 1.9 GHz	@RF 2.4 GHz	
μPC8172TB	+0.5	0	-0.5	+7.5	+6.0	+4.0	
μPC8106TB	-2	-4	-	+5.5	+2.0	-	
μPC8109TB	-5.5	-7.5	-	+1.5	-1.0	-	
μPC8163TB	+0.5	-2	-	+9.5	+6.0	-	


Note $f_{RFout} = 0.83 \text{ GHz} @ \mu \text{PC8163TB}$

Remark Typical performance. Please refer to **ELECTRICAL CHARACTERISTICS** in detail. To know the associated product, please refer to each latest data sheet.

BLOCK DIAGRAM (FOR THE μ PC8172TB)

SYSTEM APPLICATION EXAMPLES (SCHEMATICS OF IC LOCATION IN THE SYSTEM)

Wireless Transceiver

To know the associated products, please refer to each latest data sheet.

PIN EXPLANATION

Pin No.	Pin Name	Applied Voltage (V)	Pin Voltage (V) ^{№0te}	Function and Explanation	Equivalent Circuit
1	IFinput	_	1.4	This pin is IF input to double bal- anced mixer (DBM). The input is designed as high impedance. The circuit contributes to sup- press spurious signal. Also this symmetrical circuit can keep specified performance insensitive to process-condition distribution. For above reason, double bal- anced mixer is adopted.	(j) (j)
2	GND	GND	_	GND pin. Ground pattern on the board should be formed as wide as possible. Track Length should be kept as short as possible to minimize ground impedance.	
3	LOinput	_	2.3	Local input pin. Recommendable input level is –10 to 0 dBm.	
5	Vcc	2.7 to 3.3	-	Supply voltage pin.	
6	RFoutput	Same bias as Vcc through external inductor	_	This pin is RF output from DBM. This pin is designed as open collector. Due to the high imped- ance output, this pin should be externally equipped with LC matching circuit to next stage.	
4	PS	Vcc/GND	_	Power save control pin. Bias controls operation as follows. Pin bias Control Vcc Operation GND Power Save	

Note Each pin voltage is measured with $V_{CC} = V_{PS} = V_{RFout} = 3.0 V$.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Test Conditions	Rating	Unit
Supply Voltage	Vcc	$T_A = +25^{\circ}C$	3.6	V
PS pin Input Voltage	Vps	$T_A = +25^{\circ}C$	3.6	V
Power Dissipation of Package	PD	Mounted on double-side copperciad $50 \times 50 \times 1.6$ mm epoxy glass PWB (T _A = +85°C)	200	mW
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature	Tstg		-55 to +150	°C
Maximum Input Power	Pin		+10	dBm

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc	The same voltage should be applied to pin 5 and 6	2.7	3.0	3.3	V
Operating Ambient Temperature	TA		-40	+25	+85	°C
Local Input Level	PLOin	$Z_s = 50 \Omega$ (without matching)	-10	-5	0	dBm
RF Output Frequency	f RFout	With external matching circuit	0.8	-	2.5	GHz
IF Input Frequency	fıFin		50	-	400	MHz

ELECTRICAL CHARACTERISTICS

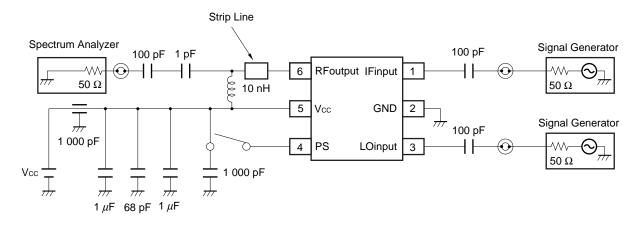
(TA = +25°C, Vcc = VRFout = 3.0 V, fIFin = 240 MHz, PLOin = -5 dBm, and VPs \ge 2.7 V unless otherwise specified)

Parameter	Symbol	Test Conditions [№]	MIN.	TYP.	MAX.	Unit
Circuit Current	Icc	No Signal	5.5	9.0	13	mA
Circuit Current In Power Save Mode	ICC(PS)	V _{PS} = 0 V	-	-	2	μA
Conversion Gain	CG1	$f_{RFout} = 0.9 \text{ GHz}, P_{IFin} = -30 \text{ dBm}$	6.5	9.5	12.5	dB
	CG2	freFout = 1.9 GHz, PIFin = -30 dBm	5.5	8.5	11.5	dB
	CG3	$f_{RFout} = 2.4 \text{ GHz}, P_{IFin} = -30 \text{ dBm}$	5	8.0	11.0	dB
Saturated RF Output Power	Po(sat)1	$f_{RFout} = 0.9 \text{ GHz}, P_{IFin} = 0 \text{ dBm}$	-2.5	+0.5	-	dBm
	Po(sat)2	$f_{RFout} = 1.9 \text{ GHz}, P_{IFin} = 0 \text{ dBm}$	-3.5	0	1	dBm
	Po(sat)3	$f_{RFout} = 2.4 \text{ GHz}, P_{IFin} = 0 \text{ dBm}$	-4	-0.5	-	dBm

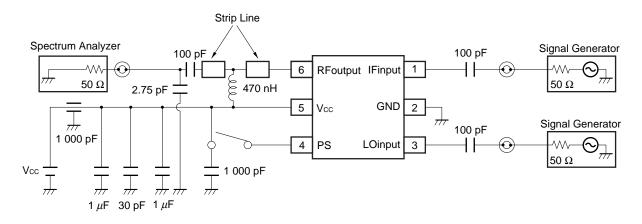
Note fRFout < fLoin @ fRFout = 0.9 GHz

fLoin < fRFout @ fRFout = 1.9 GHz/2.4 GHz

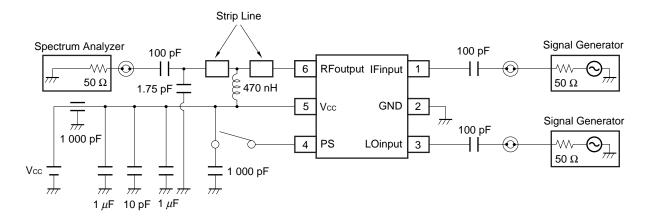
OTHER CHARACTERISTICS, FOR REFERENCE PURPOSES ONLY


(TA = +25°C, Vcc = VRFout = 3.0 V, PLOin = -5 dBm, and VPS \ge 2.7 V unless otherwise specified)

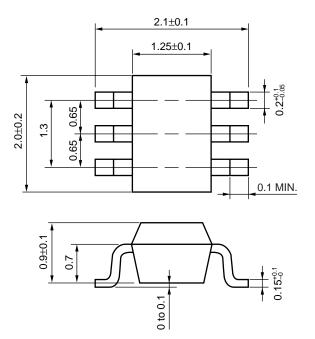
Parame	Parameter		Test Condition	1S ^{Note}	Data	Unit
Output Third-Order	Distortion	OIP₃1	frFout = 0.9 GHz		+7.5	dBm
Intercept Point		OIP₃2	frFout = 1.9 GHz	fiFin1 = 240 MHz fiFin2 = 241 MHz	+6.0	dBm
		OIP₃3	frFout = 2.4 GHz		+4.0	dBm
Input Third-Order D	Distortion	IIP31	frFout = 0.9 GHz		-2.0	dBm
Intercept Point	Intercept Point		frFout = 1.9 GHz	fıFin1 = 240 MHz fıFin2 = 241 MHz	-2.5	dBm
			frFout = 2.4 GHz		-4.0	dBm
SSB Noise Figure		SSB•NF1	freFout = 0.9 GHz, fiFin = 240 MHz		9.5	dB
		SSB•NF2	f _{RFout} = 1.9 GHz, f _{IFin} = 240 MHz		10.4	dB
		SSB•NF3	f _{RFout} = 2.4 GHz, f _{IFin} = 240 MHz		10.6	dB
Power Save	Rise time	TPS(rise)	VPS: $\text{GND} \rightarrow \text{Vcc}$	VPS: $\text{GND} \rightarrow \text{Vcc}$		μs
Response Time	Fall time	TPS(fall)	Vps: Vcc \rightarrow GND		1.5	μs


Note fRFout < fLoin @ fRFout = 0.9 GHz

fLoin < fRFout @ fRFout = 1.9 GHz/2.4 GHz


TEST CIRCUIT 1 (fRFout = 900 MHz)

TEST CIRCUIT 2 (frefout = 1.9 GHz)



TEST CIRCUIT 3 (fRFout = 2.4 GHz)

PACKAGE DIMENSIONS

6-pin super minimold (Unit: mm)

NOTE ON CORRECT USE

- (1) Observe precautions for handling because of electrostatic sensitive devices.
- (2) Form a ground pattern as wide as possible to keep the minimum ground impedance (to prevent undesired oscillation).
- (3) Connect a bypass capacitor (example: 1 000 pF) to the Vcc pin.
- (4) Connect a matching circuit to the RF output pin.
- (5) The DC cut capacitor must be each attached to the input and output pins.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared Reflow	Package peak temperature: 235°C or below Time: 30 seconds or less (at 210°C) Count: 3, Exposure limit: None ^{Note}	IR35-00-3
VPS	Package peak temperature: 215°C or below Time: 40 seconds or less (at 200°C) Count: 3, Exposure limit: None ^{Note}	VP15-00-3
Wave Soldering	Soldering bath temperature: 260°C or below Time: 10 seconds or less Count: 1, Exposure limit: None ^{Note}	WS60-00-1
Partial Heating	Pin temperature: 300°C Time: 3 seconds or less (per side of device) Exposure limit: None ^{№te}	_

Note After opening the dry pack, keep it in a place below 25°C and 65% RH for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).

[MEMO]

[MEMO]

- The information in this document is current as of June, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
 developed based on a customer-designated "quality assurance program" for a specific application. The
 recommended applications of a semiconductor product depend on its quality grade, as indicated below.
 Customers must check the quality grade of each semiconductor product before using it in a particular
 application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).