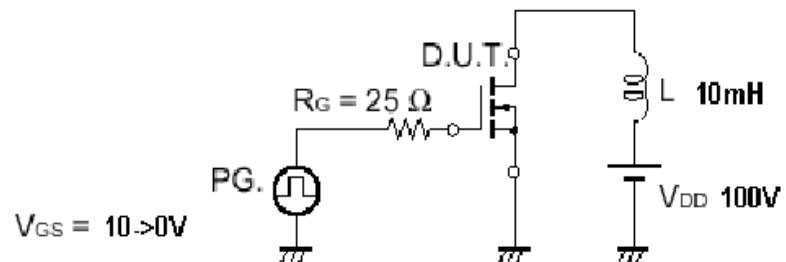

B06N60

N-Channel Power MOSFET

- Advanced Process Technology
- Ultra low On-Resistance Provides Higher Efficiency
- Avalanche Energy Specified
- Source-to-Drain Diode Recovery Time Comparable to a Discrete Fast Recovery Diode
- Diode is Characterized for Use in Bridge Circuits
- IDSS and VDS (on) Specified at Elevated Temperature

DESCRIPTION


This high voltage MOSFET used an advanced termination scheme to provide enhanced voltage-blocking capability without degrading performance over time. In addition, this advanced MOSFET is designed to withstand high energy in avalanche and commutation time. Designed for high voltage, high speed switching application in power supplies, converters and PWM motor controls, these devices are particularly well suited for bridge circuits where diode speed and commutating safe operation areas critical and offer additional and safety margin against unexpected voltage transients.

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain to Current – Continuous	I_D	6.0	A
Gate-to-Source Voltage – Continue - Non-repetitive	V_{GS} V_{GSM}	$+/ - 20$ $+/ - 40$	V
Total Power Dissipation Derate Above 25°C	PD	125 1.0	W W/°C
Operating and Storage Temperature Range	$T_{J, T_{STG}}$	-55 to 150	°C
Single Pulse Drain-to-Source Avalanche Energy – $T_J = 25^{\circ}C$ ($V_{DD} = 100V$, $V_{GS} = 10V$, $I_L = 6A$, $L = 10mH$, $R_G = 25\Omega$)	E_{AS}	180	mJ
Thermal Resistance – Junction to Case - Junction to Ambient	θ_{JC} θ_{JA}	1.0 62.5	°C/W
Maximum Lead Temperature for Soldering Purpose, 1/8" from case for 10 seconds	T_L	260	°C

TEST CIRCUIT

Test Circuit – Avalanche Capability

B06N60
N-Channel Power MOSFET

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $T_J = 25^\circ\text{C}$.

Characteristic		Symbol	B06N60		
Characteristic	Symbol	Min	Typ	Max	Units
Drain-Source Breakdown Voltage ($V_{GS} = 0\text{ V}$, $I_D = 250\text{ }\mu\text{A}$)	$V_{(BR)DSS}$	600			V
Drain-Source Leakage Current ($V_{DS} = 600\text{ V}$, $V_{GS} = 0\text{ V}$) ($V_{DS} = 480\text{ V}$, $V_{GS} = 0\text{ V}$, $T_J = 125^\circ\text{C}$)	I_{DSS}			100 50	μA
Gate-Source Leakage Current-Forward ($V_{GS} = 20\text{ V}$, $V_{DS} = 0\text{ V}$)	I_{GSSF}			100	nA
Gate-Source Leakage Current-Reverse ($V_{GS} = 20\text{ V}$, $V_{DS} = 0\text{ V}$)	I_{GSSR}			100	nA
Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_D = 250\text{ }\mu\text{A}$)	$V_{GS(\text{th})}$	2.0		4.0	V
Static Drain-Source On-Resistance ($V_{GS} = 10\text{ V}$, $I_D = 3.5\text{A}$) *	$R_{DS(\text{on})}$			1.2	Ω
Forward Transconductance ($V_{DS} = 15\text{ V}$, $I_D = 3.0\text{A}$) *	g_{FS}	3.4			mhos
Input Capacitance	C_{iss}		1498	2100	pF
Output Capacitance	C_{oss}		158	220	pF
Reverse Transfer Capacitance	C_{rss}		29	60	pF
Turn-On Delay Time	$t_{d(on)}$		14	30	ns
Rise Time	t_r		19	40	ns
Turn-Off Delay Time	$t_{d(off)}$		40	80	ns
Fall Time	t_f		26	55	ns
Total Gate Charge	Q_g		35.5	50	nC
Gate-Source Charge	Q_{gs}		8.1		nC
Gate-Drain Charge	Q_{gd}		14.1		nC
Internal Drain Inductance (Measured from the drain lead 0.25" from package to center of die)	L_D		4.5		nH
Internal Drain Inductance (Measured from the source lead 0.25" from package to source bond pad)	L_S		7.5		nH
SOURCE-DRAIN DIODE CHARACTERISTICS					
Forward On-Voltage(1)	$(I_S = 6.0\text{ A},$ $d_{IS}/dt = 100\text{A}/\mu\text{s})$	V_{SD}		0.83	V
Forward Turn-On Time		t_{on}		**	ns
Reverse Recovery Time		t_{rr}		266	ns

* Pulse Test: Pulse Width $\leq 300\mu\text{s}$, Duty Cycle $\leq 2\%$

** Negligible, Dominated by circuit inductance

How to reach us :

Hong Kong Headquarter :Unit C, 11/F, Wing Hang Insurance
Building 11 Wing Kut Street, Central, Hong Kong
Shenzhen Office :Room 4A008, 4/F, Sun Asia Electronic City,

e-mail: info@funart.com.hk

Tel: (852) 25950393

Fax: (852) 25588160

Tel: (86) 755 6130 6688

TYPICAL ELECTRICAL CHARACTERISTICS

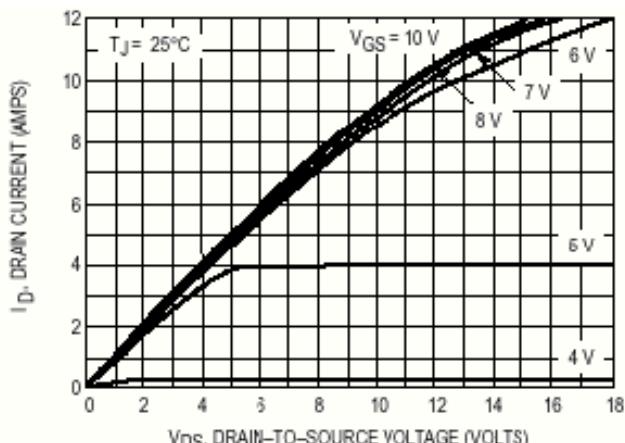


Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

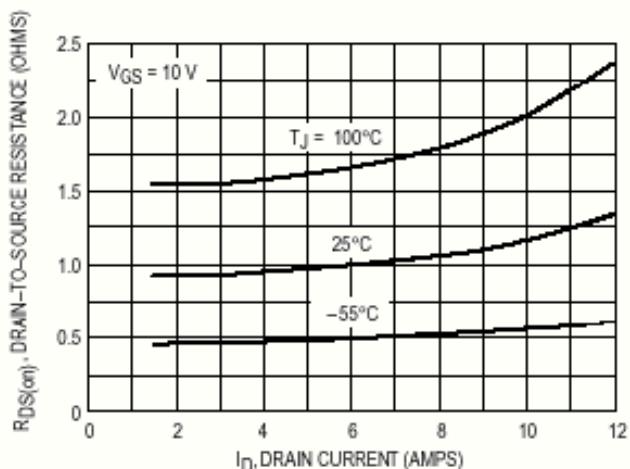


Figure 3. On-Resistance versus Drain Current and Temperature

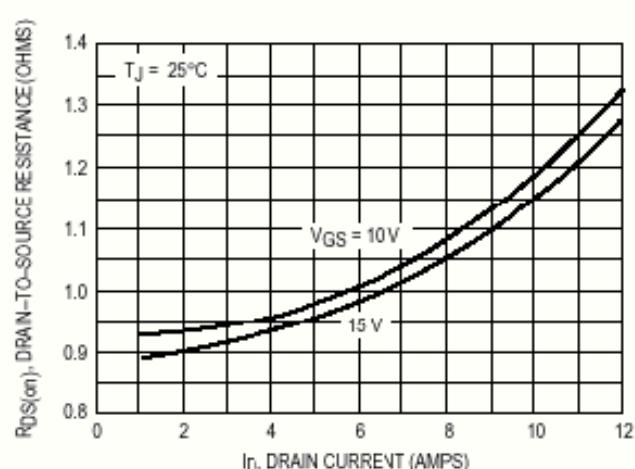


Figure 4. On-Resistance versus Drain Current and Gate Voltage

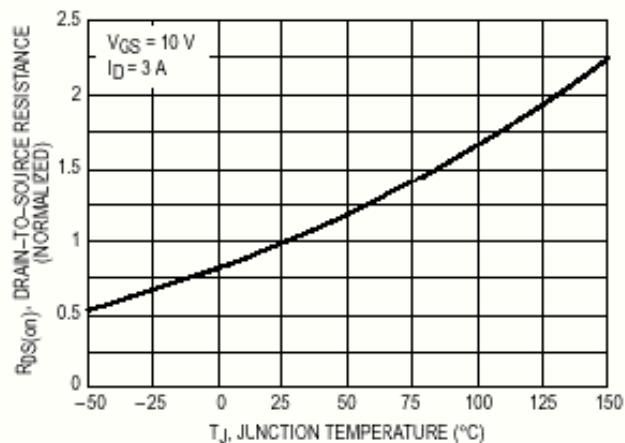


Figure 5. Cn-Resistance Variation with Temperature

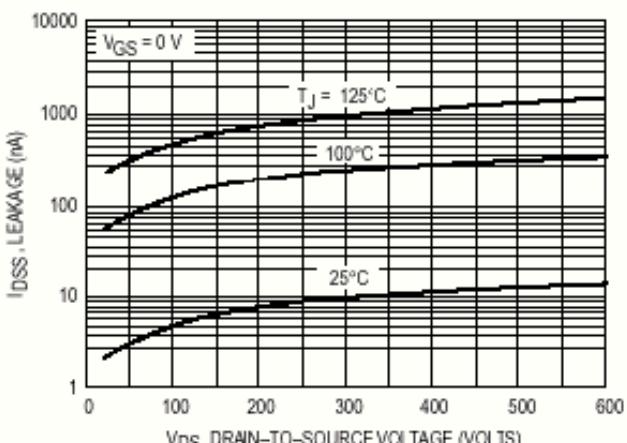
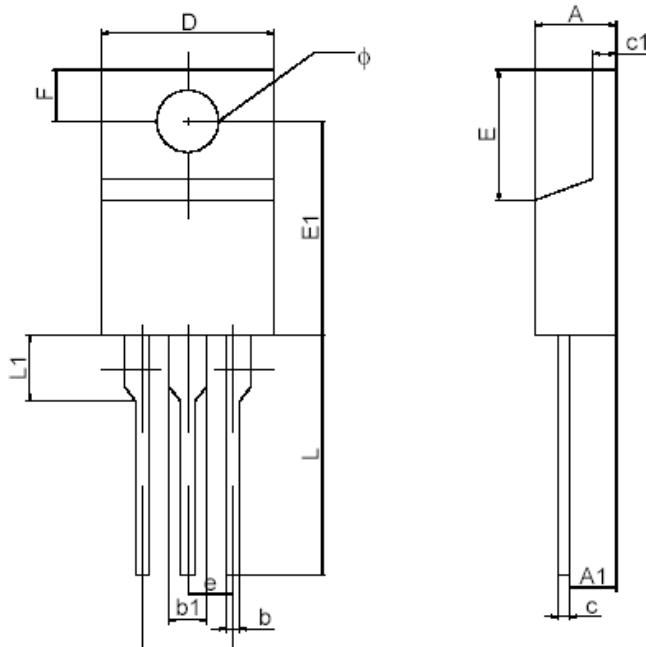


Figure 6. Drain-To-Source Leakage Current versus Voltage

How to reach us :

Hong Kong Headquarter :Unit C, 11/F, Wing Hang Insurance

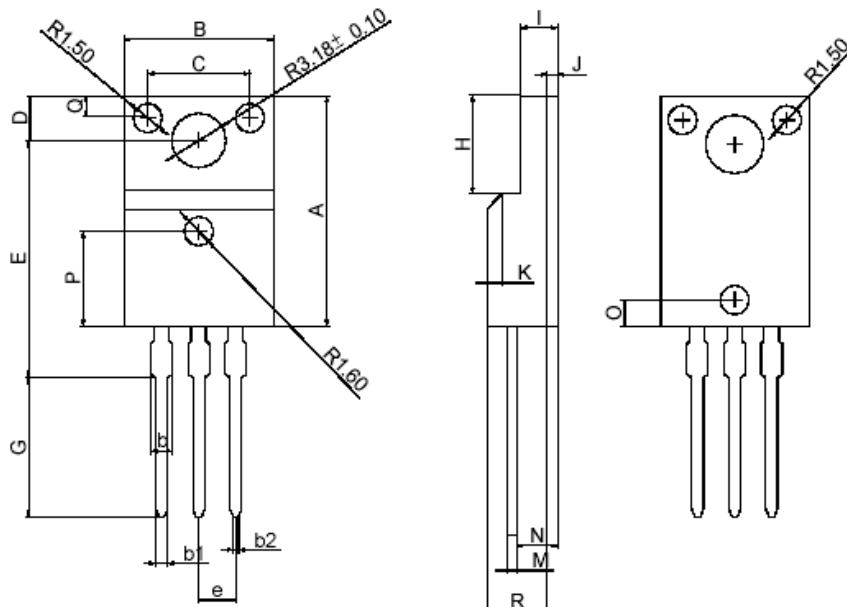
Building 11 Wing Kut Street, Central, Hong Kong


Shenzhen Office :Room 4A008, 4/F, Sun Asia Electronic City,

e-mail: info@funart.com.hk

Tel: (852) 25950393

Fax: (852) 25588160


Tel: (86) 755 6130 6688

PACKAGE DIMENSION
TO-220

PIN 1: GATE
PIN 2: DRAIN
PIN 3: SOURCE

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	4.47	—	4.67	0.174	—	0.184
A1	8.68	—	8.88	0.340	—	0.351
b	0.76	—	0.81	0.030	—	0.032
b1	1.17	—	1.37	0.045	—	0.054
c	0.31	—	0.33	0.012	—	0.021
c1	1.17	—	1.37	0.044	—	0.054
D	10.01	—	10.11	0.394	—	0.406
E	8.60	—	8.80	0.335	—	0.350
E1	12.08	—	12.48	0.475	—	0.491
e	—	2.54	—	—	0.100	—
e1	4.58	—	5.18	0.186	—	0.204
F	8.69	—	8.89	0.342	—	0.354
L	13.40	—	13.60	0.532	—	0.549
L1	9.68	—	9.88	0.384	—	0.186
Φ	3.79	—	3.89	0.148	—	0.163

Side View

Front View

TO-220FP

Front View

Side View

Back View

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	15.87	—	16.07	0.621	—	0.628
B	9.95	—	10.06	0.392	—	0.406
C	—	7.00	—	—	0.275	—
D	3.80	—	3.90	0.153	—	0.154
E	15.00	—	15.00	0.591	—	0.590
G	9.45	—	10.06	0.372	—	0.398
H	5.45	—	5.66	0.219	—	0.270
I	8.34	—	8.74	0.332	—	0.338
J	—	0.70	—	—	0.028	—
K	—	1.00	—	—	0.039	—
M	9.45	—	9.60	0.375	—	0.394
N	8.68	—	9.06	0.341	—	0.347
O	—	1.00	—	—	0.039	—
P	—	0.50	—	—	0.020	—
Q	—	1.00	—	—	0.039	—
R	4.50	—	4.60	0.177	—	0.185
b	—	1.47	—	—	0.058	—
b1	9.70	—	9.90	0.382	—	0.398
b2	9.26	—	9.46	0.360	—	0.376
e	—	0.54	—	—	0.020	—

How to reach us :

Hong Kong Headquarter :Unit C, 11/F, Wing Hang Insurance

Building 11 Wing Kut Street, Central, Hong Kong

Shenzhen Office :Room 4A008, 4/F, Sun Asia Electronic City,

e-mail: info@funart.com.hk

Tel: (852) 25950393

Fax: (852) 25588160

Tel: (86) 755 6130 6688

B06N60
N-Channel Power MOSFET

IMPORTANT NOTICE

Blue Electronic reserves the right to make changes to its products or discontinue any product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using product may involve potential risk of death, personal injury, or severe property or environmental damage. Blue Electronic products are not designed, intended, authorized or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of Blue Electronic products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

How to reach us :

**Hong Kong Headquarter :Unit C, 11/F, Wing Hang Insurance
Building 11 Wing Kut Street, Central, Hong Kong**
Shenzhen Office :Room 4A008, 4/F, Sun Asia Electronic City,

e-mail: info@funart.com.hk

Tel: (852) 25950393

Fax: (852) 25588160

Tel: (86) 755 6130 6688