

FM IF detector for cordless phones BA4116FV

The BA4116FV is an IC with mixing circuit, IF circuit, FM detector circuit, RSSI circuit, and noise detector circuit. As it can operate at low voltages, it is ideal for use in cordless phones.

Applications

Cordless phones, amateur short wave radios, and other portable wireless equipment

Features

- 1) Input frequencies of 10MHz to 150MHz can be accommodated.
- 2) Low-voltage operation. (1.8 to 5.5V)
- 3) Excellent temperature characteristic.

- High sensitivity; 12dB SINAD sensitivity = 8dBµVEMF (50 Ω)
- 5) High intercept point. (-11dBm)
- 6) Small package used. (0.65mm pitch)

•Absolute maximum ratings (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	7.0	V
Power dissipation	Pd	350*	mW
Operating temperature	Topr	-30~+85	°C
Storage temperature	Tstg	-55~+125	°C

* Reduced by 3.5mW for each increase in Ta of 1°C over 25°C.

•Recommended operating conditions (Ta = 25° C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	1.8	2.0	5.5	V

BA4116FV

Block diagram

BA4116FV

Pin descriptions

Pin No.	Function	Internal peripheral circuit	Pin voltage with no signal (V)
1	Local oscillator pin (base) Connect crystal resonator and capacitor		Vcc
2	Local oscillator pin (emitter) Connect capacitor or input local signal from external oscillator		Vcc-0.75
3	Mixer output pin Connect ceramic filter; output impedance is 1.8 kΩ		Vcc—1.33
4	Vcc pin		Vcc
5	IF amplifier input pin Connect ceramic filter; input impedance is 1.8 kΩ		Vcc-0.33
6	IF amplifier bypass pin Connect capacitor		Vcc-0.33

Pin No.	Function	Internal peripheral circuit	Pin voltage with no signal (V)
7	Filter amplifier output pin Connect CR network		0.70
8	Filter amplifier input pin Connect CR network	8 500 500 500 500 500 500 500 50	0.70
9	Demodulated signal Connect to noise amplifier or similar device; output impedance is 360 Ω		0.86
10	Discriminator pin Connect phase-shifting coil or ceramic discriminator		Vcc
11	IF amplifier output pin Connect to phase-shifting capacitor		Vcc—0.95

Pin No.	Function	Internal peripheral circuit	Pin voltage with no signal (V)
12	RSSI output pin Connect to capacitor		0.4
13	Noise comparator output pin Connect to load resister		0
14	Noise detector output pin Connect to capacitor		0
15	GND pin		0
16	Mixer input pin Connect 1st IF signal from DC cut; input impedance is $5 \ k \Omega$		0.95

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 2.0V, fin (Mix) = 21.7MHz, fin (IF) = 450kHz,
$\Delta f = \pm 1.5 kHzdev$, fm = 1kHz, all AC levels open (EMF) display)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement circuit
Quiescent current	la	2.1	3.0	4.2	mA	No input	Fig.1
(Mixer section)							
Conversion gain	Gvc	15	18	21	dB	Tested after ceramic filter(-3 dB loss)	Fig.1
Intercept point	IР	_	-11	-	dBm		_
Innutimodence	Rın	_	5.5	-	kΩ		_
Input Impedance	Cin	_	4.6	-	pF		_
Output impedance	Ro	1.2	1.8	2.4	kΩ		_
12 dB SINAD sensitivity	S	_	8	-	dB µ V		_
(IF,FM detector section)							
FM detector output	Vo	79	100	126	mVrms	V_{IN} (IF) =80dB μ V	Fig.1
Signal-to-noise ratio	S/N	43	63	_	dB	V_{IN} (IF) =80dB μ V	Fig.1
AM rejection ratio	AMR	-	40	_	dB	V_{IN} (IF) =80dB μ V, AM=30%	Fig.1
Input resistance	Rin	1.2	1.8	2.4	kΩ		_
DOOL autout walkana	VRSSI1	0.7	1.0	1.45	V	$V_{\rm IN}$ (IF) =50dB μ V	Fig.1
RSSI output voltage	VRSSI2	1.6	2.3	2.9	V	Vcc=3V VIN (IF) =100dB µV	Fig.1
(Noise detector section)							
Output voltage	VNDET	_	0.1	0.5	V	VNREC=0.2V, ISINK=0.2mA	Fig.1
Output leakage current	ILEAK	_	0	5	μA	VNREC=0.7V, VNDET=2V	Fig.1
Noise detection high level	V тн-н	0.5	0.6	0.7	V	Pin 14 voltage so that $V_{NDET} \leq 0.5 V$	Fig.1
Noise detection low level	Vth-l	0.3	0.4	0.5	V	Pin 14 voltage so that ISINK $\leq 5 \mu$ A	Fig.1
Noise detection hysteresis width	Hys	2.0	3.5	5.0	dB	Hysteresis width between V_{TH-H} and V_{TH-L} above	Fig.1

Measurement circuit

Application example

Attached components

Part No.	Part name	Prod. No./Mfg.	Notes		
CF1	Ceramic filter	Murata: CFWM450G	6 dB band width = \pm 4.5 kHz min. Attenuation band width = \pm 10 kHz max. Guaranteed attenuation= 35 dB min. Input loss = 6 dB max.		
CD1	Ceramic discriminator	Murata: CDB450C24			
L1	Wave detection coil	Toko: 5PNR-2876Z	$\begin{array}{c c} \hline 3 & \hline 4 \\ \hline 2 & \hline 1 \\ \hline 3 & 6 \end{array} & 1-3 190T \\ \hline Wire type: 0.045 \emptyset, 3UEW \\ \hline L variable range = \pm 4 \% \\ Q at no load = 20 min. \end{array}$		

•Determining the filter amplifier constant (multi-layer recovery band pass filter)

fo: Center frequency Q: Center frequency fo/band width BW Ao: I/O gain

The reference resistance R_0 is determined as $C_1 = C_2 = C_0$. $R_0 = 1/2\pi f_0 \cdot C_0$

$$R_{1} = R_{0} \cdot Q/A_{0}$$

$$R_{2} = R_{0} / [2Q - (A_{0}/Q)]$$

$$R_{3} = 2R_{0} \cdot Q$$

The Filter gain can be adjusted by varying R_1 , but with the $A_0 > 1$ design, please be aware that influence from the open loop characteristic of the amplifier causes offset in the center frequency f_0 .

BA4116FV

noise amplifier input voltage

SINAD vs. input signal level

•External dimensions (Units: mm)

