FM IF detector for cordless phones BA4116FV

The BA4116FV is an IC with mixing circuit，IF circuit，FM detector circuit，RSSI circuit，and noise detector circuit．As it can operate at low voltages，it is ideal for use in cordless phones．

－Applications

Cordless phones，amateur short wave radios，and other portable wireless equipment

－Features

1）Input frequencies of 10 MHz to 150 MHz can be ac－ commodated．
2）Low－voltage operation．（1．8 to 5.5 V ）
3）Excellent temperature characteristic．

4）High sensitivity；12dB SINAD sensitivity $=8 \mathrm{~dB} \mu \mathrm{VEMF}$ （ 50Ω ）
5）High intercept point．（ -11 dBm ）
6）Small package used．（ 0.65 mm pitch）
－Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	7.0	V
Power dissipation	Pd	350^{*}	mW
Operating temperature	Topr	$-30 \sim+85$	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$

＊Reduced by 3.5 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$ ．

Recommended operating conditions（ $\mathrm{Ta}=25^{\circ} \mathrm{C}$ ）

Parameter	Symbol	Min．	Typ．	Max．	Unit
Power supply voltage	Vcc	1.8	2.0	5.5	V

Communication ICs

-Block diagram

-Pin descriptions

Pin No.	Function	Internal peripheral circuit	Pin voltage with no signal (V)
1	Local oscillator pin (base) Connect crystal resonator and capacitor		Vcc
2	Local oscillator pin (emitter) Connect capacitor or input local signal from external oscillator		Vcc-0.75
3	Mixer output pin Connect ceramic filter; output impedance is $1.8 \mathrm{k} \Omega$		Vcc-1.33
4	Vcc pin	-	Vcc
5	IF amplifier input pin Connect ceramic filter; input impedance is $1.8 \mathrm{k} \Omega$		Vcc-0.33
6	IF amplifier bypass pin Connect capacitor		Vcc-0.33

Pin No.	Function
Filter amplifier output pin	
Connect CR network	
Filter amplifier input pin	
Connect CR network	

Function
RSSI output pin
Connect to capacitor
No.
12

Electrical characteristics（unless otherwise noted， $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=2.0 \mathrm{~V}$ ， $\mathrm{fin}_{(\mathrm{Mix})}=21.7 \mathrm{MHz}, \mathrm{fin}_{(\mathbb{F})}=450 \mathrm{kHz}$ ， $\Delta f= \pm 1.5 \mathrm{kHzdev}, \mathrm{fm}=1 \mathrm{kHz}$ ，all AC levels open（EMF）display）

Parameter	Symbol	Min．	Typ．	Max．	Unit	Conditions	Measurement circuit
Quiescent current	la	2.1	3.0	4.2	mA	No input	Fig． 1
〈Mixer section＞							
Conversion gain	Gvc	15	18	21	dB	Tested after ceramic filter（－3 dB loss）	Fig． 1
Intercept point	Ip	－	－11	－	dBm		－
Input impedance	Rin	－	5.5	－	$\mathrm{k} \Omega$		－
	$\mathrm{Cin}_{\text {}}$	－	4.6	－	pF		－
Output impedance	Ro	1.2	1.8	2.4	$\mathrm{k} \Omega$		－
12 dB SINAD sensitivity	S	－	8	－	$\mathrm{dB} \mu \mathrm{V}$		－
〈IF，FM detector section）							
FM detector output	Vo	79	100	126	mVrms	$\mathrm{V}_{\mathbb{N}(\mathbb{F})}=80 \mathrm{~dB} \mu \mathrm{~V}$	Fig． 1
Signal－to－noise ratio	S／N	43	63	－	dB	$\mathrm{V}_{\mathbb{N}(\mathbb{F})}=80 \mathrm{~dB} \mu \mathrm{~V}$	Fig． 1
AM rejection ratio	AMR	－	40	－	dB	$\mathrm{V}(\mathbb{N}(\mathbb{F})=80 \mathrm{~dB} \mu \mathrm{~V}, \mathrm{AM}=30 \%$	Fig． 1
Input resistance	RiN	1.2	1.8	2.4	k ת		－
RSSI output voltage	VRSSII	0.7	1.0	1.45	V	$\mathrm{V}_{\mathrm{cc}}=3 \mathrm{~V} \quad \mathrm{VIN}_{\text {（IF）}}=50 \mathrm{~dB} \mu \mathrm{~V}$	Fig． 1
	VRSSI2	1.6	2.3	2.9	V		Fig． 1
〈Noise detector section〉							
Output voltage	Vndet	－	0.1	0.5	V	$\mathrm{V}_{\text {NREC }}=0.2 \mathrm{~V},{ }_{\text {sink }}=0.2 \mathrm{~mA}$	Fig． 1
Output leakage current	Ileak	－	0	5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {NREC }}=0.7 \mathrm{~V}, \mathrm{~V}_{\text {NDEt }}=2 \mathrm{~V}$	Fig． 1
Noise detection high level	$\mathrm{V}_{\text {TH－H }}$	0.5	0.6	0.7	V	Pin 14 voltage so that $\mathrm{V}_{\text {NDEt }} \leqq 0.5 \mathrm{~V}$	Fig． 1
Noise detection low level	$\mathrm{V}_{\text {th－L }}$	0.3	0.4	0.5	V	Pin 14 voltage so that Isink $\leqq 5 \mu \mathrm{~A}$	Fig． 1
Noise detection hysteresis width	Hys	2.0	3.5	5.0	dB	Hysteresis width between $\mathrm{V}_{\text {TH－H }}$ and $\mathrm{V}_{\text {TH－L }}$ above	Fig． 1

- Measurement circuit

Fig. 1

Application example

Fig. 2
-Attached components

Part No.	Part name	Prod. No./Mfg.	Notes
CF1	Ceramic filter	Murata: CFWM450G	6 dB band width $= \pm 4.5 \mathrm{kHz}$ min. Attenuation band width $= \pm 10 \mathrm{kHz}$ max. Guaranteed attenuation $=35 \mathrm{~dB}$ min. Input loss $=6 \mathrm{~dB}$ max.
CD1	Ceramic discriminator	Murata: CDB450C24	
L1	Wave detection coil	Toko: 5PNR-2876Z	

Determining the filter amplifier constant (multi-layer recovery band pass filter)
f_{0} : Center frequency

Fig. 3

Q: Center frequency $f_{0} /$ band width BW
Ao: I/O gain

The reference resistance R_{0} is determined as $\mathrm{C}_{1}=\mathrm{C}_{2}=$ Co.
$R_{0}=1 / 2 \pi f_{0} \cdot C_{0}$
$R_{1}=R_{0} \cdot Q / A_{0}$
$R_{2}=R_{0} /\left[2 Q-\left(A_{0} / Q\right)\right]$
$R_{3}=2 R_{0} \cdot Q$

The Filter gain can be adjusted by varying R_{1}, but with the $A_{0}>1$ design, please be aware that influence from the open loop characteristic of the amplifier causes offset in the center frequency f_{o}.

Electrical characteristic curves

Fig. 4 Quiescent current vs. power supply voltage

Fig. 5 Mixer output voltage vs. input voltage

Fig. 6 Mixer conversion gain vs. Pin 2 OSC injection level

Fig. 7 Detector output response, AMR, SINAD vs. input signal levi

Fig. 10 Detector output level, THD vs. ambient temperature

Fig. 13 RSSI voltage vs. ambient temperature

Fig. 14 Pin 13 voltage, Pin 14 voltage vs. noise amplifier input voltage

- External dimensions (Units: mm)

