Optical diaga 级的13FP-Y供应商

4-channel BTL driver for CD players and CD-ROM drives **BA5913FP-Y**

The BA5913FP-Y is an IC with an internal 4-channel BTL driver for CD players and CD-ROM driver actuators and motors, as well as an internal standard operational amplifier. In addition, the 25-pin HSOP package allows for application miniaturization.

Applications

CD players, CD-ROM drives

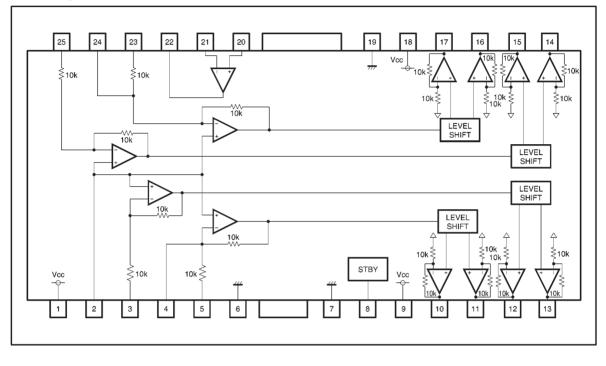
Features

- 1) 4-channel BTL driver.
- 2) Wide dynamic range (typically 3.6V when Vcc = 5V and RL = 8Ω).
- 3) Internal thermal shutdown circuit.
- 4) Gain is adjustable with attached resistor.

- 5) Internal standard operational amplifier.
- 6) Can enter power save mode with standby pin.
- 7) HSOP 25-pin power package allows for application miniaturization.

 Gain is adjustable w Absolute maximum radius 			
Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	7	V
Power dissipation	Pd	1.45 * ¹	W
Operating temperature	Topr	-35~+85	C
Storage temperature	Tstg	-55~+150	Ĵ

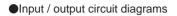
*1 When mounted on a 70mm×70mm×1.5mm glass epoxy board with less than 3% foil coverage. Reduced by 11.6mW for each increase increase in Ta of 1°C over 25°C. DZSC.COM


Recommended operating conditions (Ta = 25°C)

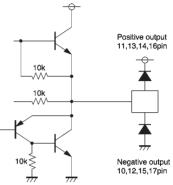
Parameter	Symbol	Min.	Тур.	Max.	Unit	
Power supply voltage	Vcc	4.3	5	6.6	V	

BA5913FP-Y

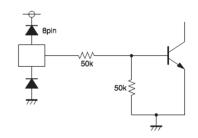
Block diagram

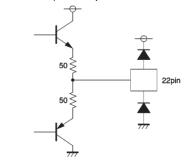


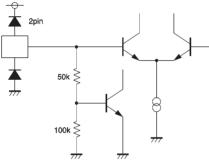
Pin descriptions

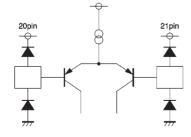

Pin No.	Pin name	Function	Pin No.	Pin name	Function
1	Vcc	Vcc	14	VO4 (+)	Driver channel 4 positive output
2	BIAS IN	Bias amplifier input	15	VO4 (-)	Driver channel 4 negative output
3	Vin1	Driver channel 1 input	16	VO3 (+)	Driver channel 3 positive output
4	VIN2'	Driver channel 2 gain adjustment input	17	VO3 (-)	Driver channel 3 negative output
5	Vin2	Driver channel 2 input	18	Vcc	Vcc
6	GND	Ground	19	GND	Ground
7	GND	Ground	20	OP IN (+)	Operational amplifier positive input
8	STBY	Standby control	21	OP IN (-)	Operational amplifier negative input
9	Vcc	Vcc	22	OP OUT	Operation amplifier output
10	VO2 (-)	Driver channel 2 negative output	23	VIN3	Driver channel 3 input
11	VO2 (+)	Driver channel 2 positive output	24	VIN3'	Driver channel 3 gain adjustment input
12	VO1 (-)	Driver channel 1 negative output	25	VIN4	Driver channel 4 input
13	VO1 (+)	Driver channel 1 positive output			

Note : The "driver positive output " and "driver negative ouutput " indicat polarity relative the input.


When the input pin is at the high level, the negative output pin is at the low level and the positive output pin is at the high level.




Standby


Operational amplifier output

Operational amplifier input

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement circuit
Current dissipation during standby	lsт	-	—	200	μA	_	Fig.1
Quiescent current	lcc	—	13	20	mA	No load	Fig.1
Output offset voltage	Voo	-40	_	40	mV	—	Fig.1
Maximum output amplitude	Vом	3.1	3.6	_	V	-	Fig.1
Closed loop voltage gain	Gvc	10.4	11.8	13.2	dB	Viℕ=0.1Vrms, 1kHz	Fig.1
Standby voltage	VSTBY	—	_	0.5	V	-	Fig.1
Standby release voltage	VSTOFF	2.0	_	_	V	-	Fig.1
(Operation amplifier)							
Offset voltage	VOFOP	-6	0	6	mV	_	Fig.2
Input bias current	VBOP	_	_	300	nA	-	Fig.2
Output high level voltage	Vонор	3.9	4.35	_	V	_	Fig.2
Output low level voltage	VOLOP	_	0.75	1.1	V	_	Fig.2
Output drive current (sink)	Isı	10	30	_	mA	Vcc at 50 Ω	Fig.2
Output drive current (source)	Iso	10	25	_	mA	Ground at 50 Ω	Fig.2
Slew rate	SRop	_	1	_	V/µs	100kHz square wave, 2VP-P output	Fig.2

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 5V, BIAS = 2.5V, R_L = 8Ω)

ONot designed for radiation resistance.

BA5913FP-Y

Measurement circuits

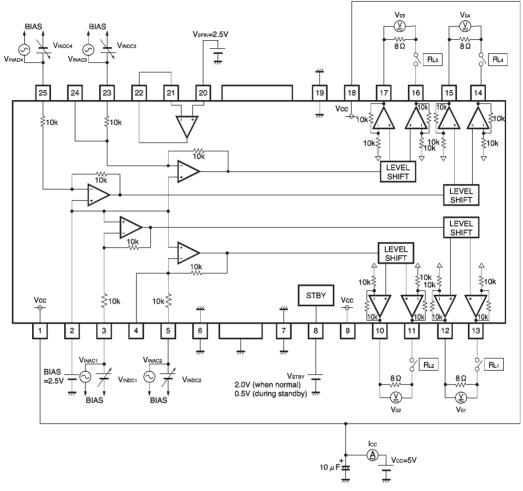


Fig.1 Driver measurement circuit

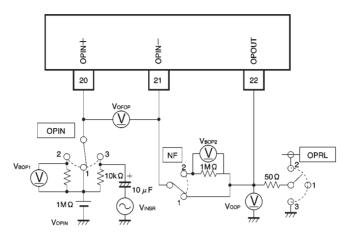
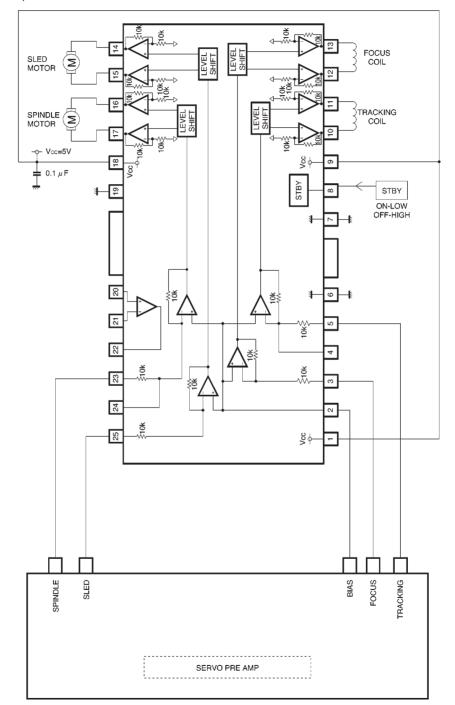


Fig.2 Operational amplifier measurement circuit

Measurement circuit switch table


```
(1) Driver (OPIN \rightarrow 1, NF \rightarrow 1, OPRL \rightarrow 1, VOPIN = 2.5V)
```

Sympol	Input	Note	Test point	
	VINDC	Note	rest point	
lsт	OFF	-	VSTBY=0.5V	lcc
lcc	OFF	-	-	lcc
Voo	ON	0V	_	V01~4
Vом	Ļ	±2.5V	_	V01~4
Gvc	Ļ	_	VINAC=0.1Vrms, 1kHz	V01~4

(2) Operational amplifier (RL \rightarrow OFF)

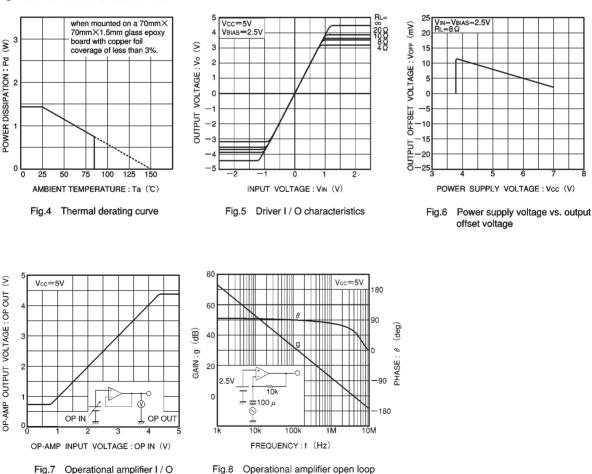
Symbol		Switch		Input	Note	Test point
Symbol	OPIN	NF	OPRL	Vopin		
Vofop	1	1	1	2.5V	-	VOFOP
VBOP	2	2	1	2.5V	_	VBOP1~2
Vонор	1	1	1	5V	_	VOOP
Volop	1	1	1	0V	—	VOOP
lsı	1	1	2	2.5V	_	VOOP
lso	1	1	3	2.5V	_	VOOP
SROP	3	1	1	2V	VINSR=100kHz, square wave, 2VP-P output	VOOP

Application example

BA5913FP-Y

Operation notes

(1) The BA5913FP-Y has a thermal shutdown circuit. The output current is muted when the chip temperature rises above $175^{\circ}C$ (typically). When the chip temperature falls to $150^{\circ}C$ (typically), the driver circuit starts up again.

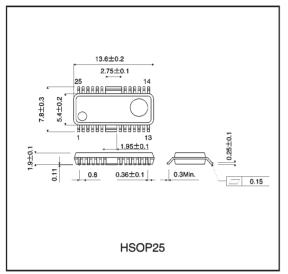

(2) Can be set that if the voltage of the standby pin (pin 8) is open or falls below 0.5V, the driver turns off and enters the power save mode. During normal operation, have pin 8 pulled up to over 2.0V.

(3) Muting occurs when the bias pin (pin 2) drops below 1.0V (typically). Make sure it stays above 1.4V during normal use.

(4) Muting occurs during thermal shutdown or a drop in the bias pin voltage. In each case, only drivers are muted. During muting, the output pins remain at the internal bias voltage, roughly ($V_{cc}-VF$) / 2.

(5) Connect the IC to a $0.1\mu F$ bypass capacitor between power supplies, at the base of the IC.

(6) Connect the heat radiation fin to an external ground.


characteristics

Electrical characteristic curves

characteristics

BA5913FP-Y

External dimensions (Units: mm)

