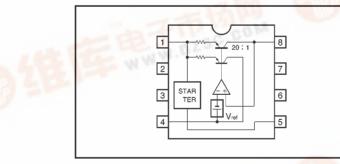


急出袋

General use electronic governor BA6220

The BA6220 is a monolithic IC designed for controlling the speed of general-purpose DC motors. The IC consists of a reference voltage generator, current multiplier, comparator, and start-up circuit. The speed of DC motor is controlled by detecting the counter-electromotive force generated by the motor. Various DC motors can be driven by changing the external constants. A large power dissipation is allowed by grounding the pin connected with the IC substrate.


Applications

Radio cassette tape recorders

Features

- 1) Wide range of operating voltage. $(3.5 \sim 16V)$
- 2) Large starting torque at low supply voltage.
- 3) Large power dissipation allowable by using the PCB as a heat sink.
- 4) Various DC motors can be driven by changing the external constants.

Block diagram

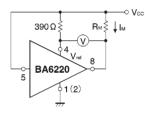
Absolute maximum ratings (Ta = 25°C)

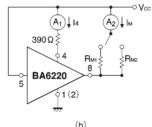
Parameter	Symbol	Limits	Unit	Conditions	
Power supply voltage	Vcc	18	sG-v	-	
Power dissipation	Pd	1.4*	W	PCB: 9cm ² t=1.0	

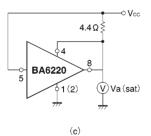
* Reduced by 11.2 mW for each increase in Ta of 1°C over 25°C.

• Recommended operating conditions (Ta = 25° C)

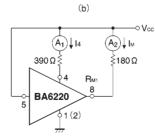
	Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
S Po	wer supply voltage	Vcc	3.5	—	16	V	Load: 8g - cm




Motor driver ICs


Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement circuit
Bias current	4	0.5	0.8	1.2	mA	R _M =180Ω	Fig.1 (d)
Output saturation voltage	Vsat	_	1.5	2.0	V	V_{CC} =4.2V, R_M =4.4 Ω	Fig.1 (c)
Reference voltage	Vref	1.10	1.27	1.40	V	Im=10mA	Fig.1 (a)
Current constant	К	18	20	22	-	R _{M1} =44Ω, R _{M2} =33Ω	Fig.1 (b)
Reference voltage characteristic	$\frac{\Delta V_{ref}}{V_{ref}} \Delta V_{cc}$	_	0.06	_	%/V	Iм=100mA, Vcc=6.3∼16V	Fig.1 (a)
Current constant voltage characteristic		_	0.4	_	%/V	IM=100mA, Vcc=6.3~16V	Fig.1 (b)
Reference voltage current characteristic	$\frac{\Delta V_{ref}}{V_{ref}} / \Delta I_M$	_	-0.02	_	% / mA	Iм=30~200mA	Fig.1 (a)
Current constant current characteristic	<u>ΔΚ</u> ΔΙ _Μ	_	-0.02	_	% / mA	Iм=30~200mA	Fig.1 (b)
Reference voltage temperature characteristic	$\frac{\Delta V_{ref}}{V_{ref}} \Delta Ta$	_	0.01	_	%/°C	IM=100mA, Ta=−25~75°C	Fig.1 (a)
Current ratio temperature characteristic	$\frac{\Delta K}{K} \Delta Ta$	_	0.01	-	%/°C	I _M =100mA, T₂=−25~75°C	Fig.1 (b)

●Electrical characteristics (unless otherwise noted, Ta = 25°C and Vcc = 12V)


Measurement circuits

(a)

(d)

Application example

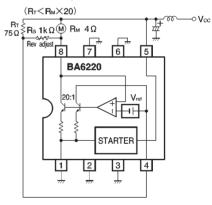
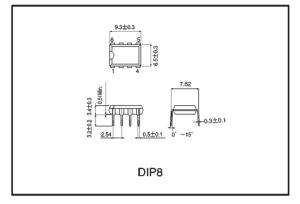



Fig.2

Fig.1

•External dimensions (Units: mm)

