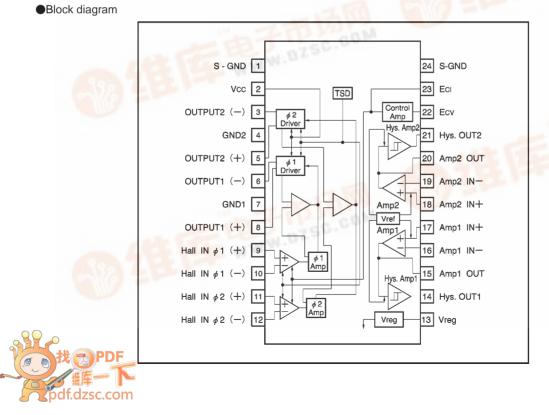
Motor driven Co_{70供应商}

捷多邦,专业PCB打样工厂,24小时加


2-phase motor driver for VCR cylinder motors BA6970FS

The BA6970FS is a direct-drive motor driver suitable for 2-phase, full-wave linear motors. The IC consists of a Hall amplifier control circuit, driver circuits, FG / PG signal amplifiers, and hysteresis amplifiers.

Applications VCR cylinder motors

Features

- 1) Linear drive system provides low switching noise.
- Output current can be controlled by either current or voltage input.
- 3) Two amplifiers and two hysteresis amplifiers.
- 4) Constant supply voltage pin for hall devices.
- High ratio of output current and control current. (4000 typically)
- 6) Available in a compact surface-mount package.

•Absolute maximum ratings (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Applied voltage	Vcc	18	V
Power dissipation	Pd	1000*1	mW
Operating temperature	Topr	-25~+75	ĉ
Storage temperature	Tstg	-55~+150	Ĉ
Output current	Юмах.	1200*2	mA
Input current	ECIMax.	5	mA

*1 When mounted on a glass epoxy board (90× 50×1.6 mm). Reduced by 8 mW for each increase in Ta of 1°C over 25°C.

*2 Should not exceed Pd or ASO values (for the current of one phase).

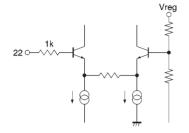
• Recommended operating conditions (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Operating power supply voltage	Vcc	8.0~16.0	V

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Supply current	lcc	-	5.8	13.0	mA	—
Constant output voltage	Vreg	4.6	5.0	5.4	V	—
(MDA)				•		
Hall element minimum input voltage	VINH	50	-	-	mV _{P-P}	_
Hall input bias current	Івн	—	0.25	2.0	μA	Icont=100 μ A
Output saturation high level voltage	Vон	10.45	10.79	_	V	Ιουτ=800mA
Output saturation low level voltage	Vol	-	1.33	2.16	V	louт=800mA
(ECV (voltage control))			1			1
Allowable torque command input voltage	Ecv	0	_	Vreg	V	_
Torque control voltage offset	Ecvors	-150	0	150	mV	For 0.48 X V _{reg}
Torque control input current	IECVIN	-	1.0	6	μA	Ecv=2.5V
Output standby current	ECVidle	-	0	5	mA	Ecv=2.5V
I/O gain	GECV	0.38	0.55	0.64	A/V	Measured at Ecv = 2.8 V, 3.3 V Δ V _{IN} = 100 mV
(Eci (current control))						
Ratio of pin-23 current and output current	IOUT / Icont	3300	4000	4700	_	Δ VIN = 100 mV; measured at lcont = 30 μ A, 50 μ A
Output current differential	ΔΙουτ	-30	0	30	mA	Icont=30 μA
(Amp1, Amp2)						-
Input sink current	lina	-	0.2	2.0	μA	VIN=2.5V
Open loop gain	GA	65	70	_	dB	fin=500Hz
DC bias voltage variation	ΔVba	-10	0	10	%	Variation from V _{reg}
Output high level voltage	Vон а	V _{reg} —1.48	V _{reg} —0.72	_	v	Iон а=0.5mA
Output low level voltage	VOL A	—	0.85	1.45	V	lo∟₄=0.5mA
Input voltage of Amplifiers 1 and 2	VAB	1.2	_	4.0	V	_
(Hys. Amp1, 2)						
Hysteresis width	Vhys	±142	±180	±218	mV	_
Output low level voltage	VOLhys	-	0.12	0.32	V	IoLhysA=2mA
Out put pull-up resistance	VBhys	7.0	10.0	13.0	kΩ	_

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 12V)

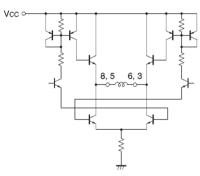
ONot designed for radiation resistance.

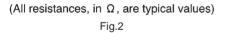

Pin descriptions

Pin No.	Pin name	Function			
1	S-GND	Signal ground			
2	Vcc	Output current control			
3	OUTPUT2 (-)	Output			
4	GND2	OUTPUT2 GND			
5	OUTPUT2 (+)	Output			
6	OUTPUT1 (-)	Output			
7	GND1	OUTPUT1 GND			
8	OUTPUT1 (+)	Output			
9	Hall IN ø1 (+)	Hall signal input			
10	Hall IN ø 1 (—)	Hall signal input			
11	Hall IN ¢2 (+)	Hall signal input			
12	Hall IN ø 2 (—)	Hall signal input			
13	Vreg	Constant voltage output			
14	Hys.OUT1	Hysteresis amplifier 1 output			
15	Amp1OUT	Amplifier 1 output ; hysteresis amplifier 1 input			
16	Amp1IN—	Amplifier 1 input , inverted			
17	Amp1IN+	Amplifier 1 input , non-inverted			
18	Amp2IN+	Amplifier 2 input , non-inverted			
19	Amp2IN-	Amplifier 2 input , inverted			
20	Amp2OUT	Amplifier 2 output ; hysteresis amplifier 2 input			
21	Hys.OUT2	Hysteresis amplifier 2 output			
22	ECV	Output current control (voltage control)			
23	ECI	Output current control (current control)			
24	S-GND	Signal ground			

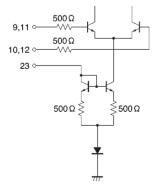
BA6970FS

Input / output circuits





(All resistances, in Ω, are typical values)


Fig.1

(2) Coil output (8, 6, 5, 3 pin)

(3) Hall inputs (9, 10, 11, 12 pin), Eci input

(4) I / O of amplifiers 1 and 2

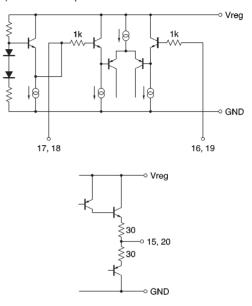
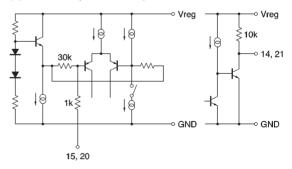



Fig.4

(5) I / O of hysteresis amplifiers

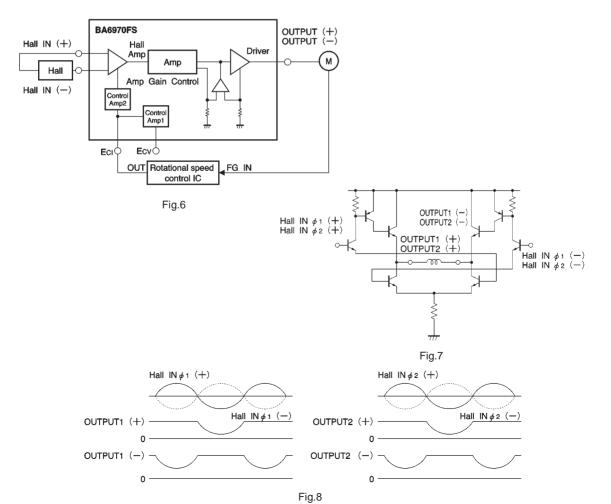
(All resistances, in Ω, are typical values)

Fig.5

*Note that the resistance values can vary $\pm 30\%$

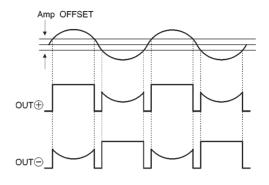
(All resistances, in Ω , are typical values)

BA6970FS


Circuit operation

(1) The signal from the Hall device is amplified by the Hall amplifier and then supplied to the driver circuit. The driver gain, which is constant, is regulated by changing the Hall amplifier gain with the E_{CI} input current or the E_{CV} input voltage (E_{CI} and E_{CV} are output current control pins). The motor rotational speed is sensed by the FG, and the output from which is F / I-converted and supplied to the E_{CV} pin as a feedback signal, so that a constant rotational speed is maintained as follows (Fig. 6) :

- 1) The motor speed decreases.
- 2) The speed control IC outputs a feedback signal
- 3) The Hall amplifier gain increases.
- 4) The output current increases.
- 5) The motor speed increases.


(2) When the voltage on Hall $IN\phi_1(+)$ is higher than the voltage on Hall $IN\phi_1(-)$, an output current flows from OUT1 (+) to OUT1 (-) according to the voltage differential. When the voltage on Hall $IN\phi_1(-)$ is higher, on the other hand, an output current flows from OUT1 (-) to OUT1 (+).

Similarly, when the voltage on Hall $IN\phi_2(+)$ is higher than the voltage on Hall $IN\phi_2(-)$, an output current flows from OUT2(+) to OUT2(-) according to the voltage differential. When the voltage on Hall $IN\phi_2(-)$ is higher, on the other hand, an output current flows from OUT2(-) to OUT2(+).

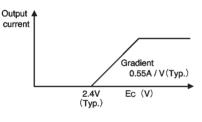
BA6970FS

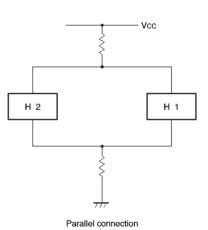
(3) Output waveforms are shown in Fig. 9. Because of the amplifier offset, the output is left OPEN when the output signal switches from positive to negative. The output waveform is determined by the external circuit because the IC impedance increases during this transition period. Since inductive loads are usually provided, a capacitor should be connected to suppress backlash voltages.

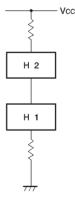
Operation notes

(1) Ecv input (pin 22)

The E_{CV} input is plotted against the output current in Fig. 10.




Fig.10


(2) Hall input

Hall input signals of 50mV (peak to peak) or greater should be applied between pins 9 and 10 and between pins 11 and 12. The DC input range is 2V to (Vreg - 1.5V). There will be no problem if the input is centered around Vreg / 2.

Because the Hall input impedance is $1M\Omega$ or grater, any type of Hall device can be connected. No current flows when the transistor is off because pins 9 and 10 as well as pins 11 and 12 are differential inputs.

Because the IC is a linear driver, any DC offset in the Hall device will be amplified and appear in the output. Use Hall devices having a minimum offset. Hall devices can be connected in either series or parallel.

Series connection

(3) Eci input

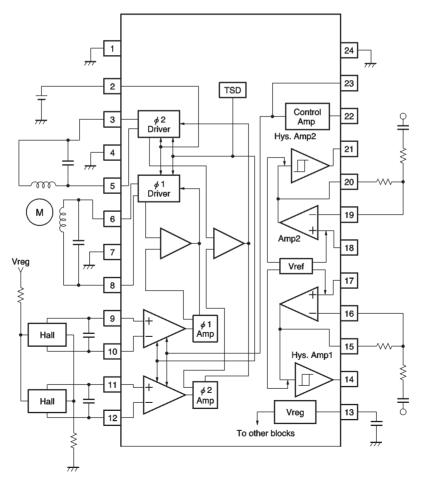
The Ec1 input circuit has $2V_{\text{F}}$ and a 500Ω resistor connected in series. Current is limited only by the 500Ω resistor.

(4) Amplifiers 1 and 2

An input range of 0.6V to ($V_{\rm CC}-1.2V$) is recommended. Unpredictable outputs may occur when the input is outside this range.

(5) Hysteresis amplifier

An input range of 0.6V to $(V_{\rm CC} - 1.2V)$ is recommended. Unpredictable outputs may occur when the input is outside this range.


Application example

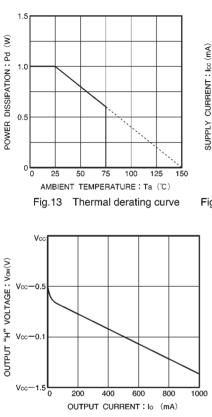
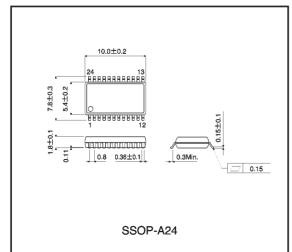
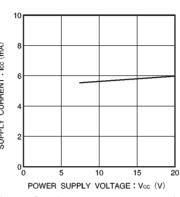
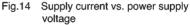
(6) Thermal shutdown circuit

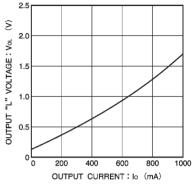
The thermal shutdown circuit puts the driver outputs (8, 6, 5, 3 pin) to the open state at the temperature of $175^{\circ}C$ (typical). The circuit is deactivated when the temperature drops to about $155^{\circ}C$.

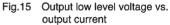
(7) Signal ground pin

Pins 1 and 24 are signal ground pins. Be noted that unpredictable outputs may occur if your application causes a large current between pins 1 and 24 via the bonding wire IC chip.

BA6970FS


Fig.16 Output high level voltage vs. output current


External dimensions (Units: mm)

