

Two-channel switching regulator controller

BA9741F / BA9741FS

The BA9741F and BA9741FS are two-channel switching regulator controllers that use the PWM method. Both circuits can be used for DC to DC conversion for step-up, step-down, and inverting. The IC comes in a compact package, making it ideal for use in portable equipment.

● Applications

DC/DC converters for video cameras and notebook computers etc.

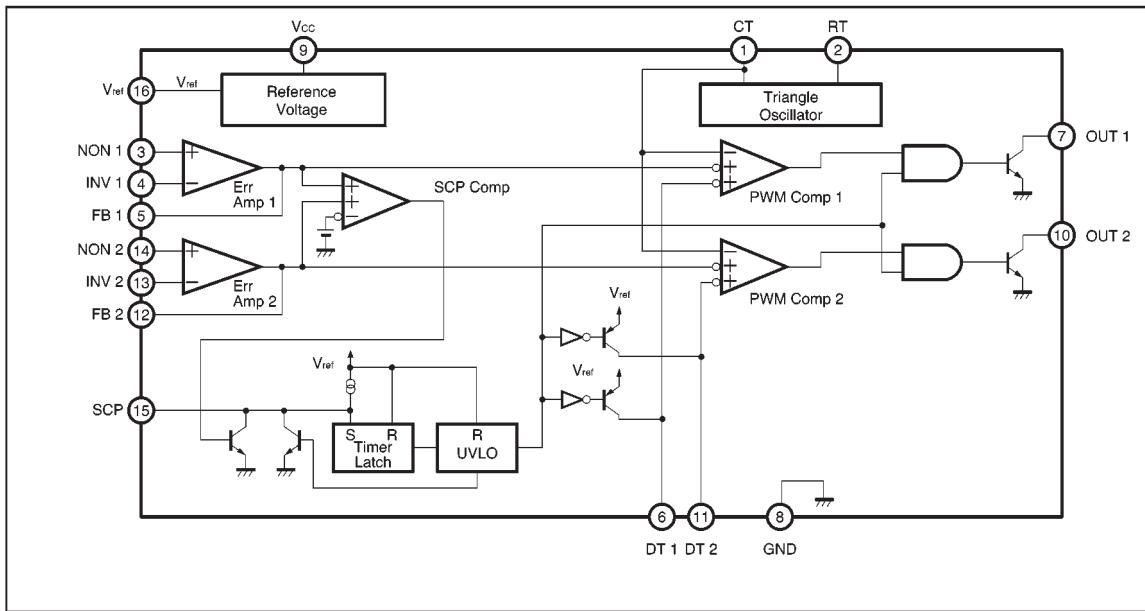
● Features

- 1) High-accuracy reference voltage circuit ($\pm 1\%$).
- 2) Timer-latch, short-circuit protection circuit
- 3) Miss-operation prevention circuit for low-voltage input.
- 4) Reference voltage with output (2.5V).
- 5) Rest period adjustment is possible over the entire duty range.

● Absolute maximum ratings ($T_a = 25^\circ\text{C}$)

Parameter	Symbol	Limits	Unit
Power supply voltage	V_{cc}	36	V
Power dissipation	BA9741F	P_d	500^*1
	BA9741FS	P_d	650^*1
Operating temperature	T_{opr}	$-40 \sim +85$	°C
Storage temperature	T_{stg}	$-55 \sim +125$	°C
Output current	I_o	120^*2	mA
Output voltage	V_o	36	V

*1 When mounted on 70mm \times 70mm \times 1.6mm glass epoxy board.


Reduced by 5.0mW(BA9741F), 6.5mW(BA9741FS) for each increase in T_a of 1°C over 25°C.

*2 Should not exceed P_d and ASO values.

● Recommended operating conditions ($T_a = 25^\circ\text{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit
Power supply voltage	V_{cc}	3.6	6.0	35	V
Output current	I_o	—	—	100	mA
Output voltage	V_o	—	—	35	V
Error amplifier input voltage	V_{om}	0.3	—	1.6	V
Timing capacitor	C_{ct}	100	—	15000	pF
Timing resistor	R_{rt}	5.1	—	50	kΩ
Oscillator frequency	f_{osc}	10	—	800	kHz

● Block diagram

● Pin descriptions

Pin No.	Pin name	Function
1	CT	External timing capacitor
2	RT	External timing resistor
3	NON1	Positive input for error amplifier 1
4	INV1	Negative input for error amplifier 1
5	FB1	Error amplifier 1 output
6	DT1	Output 1 dead time / soft start setting
7	OUT1	Output 1
8	GND	Ground
9	Vcc	Power supply
10	OUT2	Output 2
11	DT2	Output 2 dead time / soft start setting
12	FB2	Error amplifier 2 output
13	INV2	Negative input for error amplifier 2
14	NON2	Positive input for error amplifier 2
15	SCP	Time latch setting
16	Vref	Reference voltage output (2.5V)

Regulator ICs

BA9741F / BA9741FS

● Electrical characteristics (unless otherwise noted, $T_a = 25^\circ\text{C}$, and $V_{cc} = 6\text{V}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
⟨Reference voltage block⟩						
Output voltage	V_{ref}	2.4	2.5	2.6	V	$I_{ref}=1\text{mA}$
Input stability	V_{DLI}	—	1	10	mV	$V_{cc}=3.6\text{~}35\text{V}$
Load stability	V_{DLO}	—	1	10	mV	$I_{ref}=0\text{~}5\text{mA}$
⟨Triangular wave oscillator⟩						
Oscillation frequency	f_{osc}	320	400	480	kHz	$R_{RT}=10\text{k}\Omega$, $C_{CT}=220\text{pF}$
Frequency deviation	f_{dv}	—	1	—	%	$V_{cc}=3.6\text{~}35\text{V}$
⟨Protection circuit⟩						
Threshold voltage	V_{IT}	1.48	1.64	1.80	V	—
Standby voltage	V_{STB}	—	50	100	mV	No pull up
Latch voltage	V_{LT}	—	30	100	mV	No pull up
Source current	I_{SCP}	1.5	2.5	3.5	μA	—
Comparator threshold voltage	V_{CT}	0.9	1.05	1.2	V	5pin, 12pin
⟨Rest period adjustment circuit⟩						
Input threshold voltage ($f_{osc} = 10\text{kHz}$)	V_{10}	1.79	1.97	2.15	V	Duty cycle=0%
	V_{100}	1.32	1.48	1.64	V	Duty cycle=100%
On duty cycle	D_{ON}	45	55	65	%	Divide V_{ref} usung $13\text{k}\Omega$ and $27\text{k}\Omega$
Input bias current	I_{BDT}	—	0.1	1	μA	$DT1, DT2=2.0\text{V}$
Latch mode source current	I_{DT}	200	560	—	μA	$DT1, DT2=0\text{V}$
Latch input voltage	V_{DT}	2.28	2.48	—	V	$I_{DT}=40\text{ }\mu\text{A}$
⟨Low-voltage input miss-operation prevention circuit⟩						
Threshold voltage	V_{UT}	—	2.53	—	V	—
⟨Error amplifier⟩						
Input offset voltage	V_{IO}	—	—	6	mV	—
Input offset current	I_{IO}	—	—	30	nA	—
Input bias current	I_{IB}	—	15	100	nA	—
Open circuit gain	AV	70	85	—	dB	—
Common-mode input voltage range	V_{OM}	0.3	—	1.6	V	$V_{cc}=3.6\text{~}35\text{V}$
Common-mode rejection ratio	$CMRR$	60	80	—	dB	—
Maximum output voltage	V_{OH}	2.3	2.5	—	V	—
Minimum input voltage	V_{OL}	—	0.7	0.9	V	—
Output sink current	I_{OI}	3	20	—	mA	$FB=1.25\text{V}$
Output source current	I_{OO}	45	75	—	μA	$FB=1.25\text{V}$
⟨PWM comparator⟩						
Input threshold voltage ($f_{osc} = 10\text{kHz}$)	V_{10}	1.79	1.97	2.15	V	Duty cycle=0%
	V_{100}	1.32	1.48	1.64	V	Duty cycle=100%

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
<Output block>						
Saturation voltage	V_{SAT}	—	0.8	1.2	V	$I_o=75\text{mA}$
Leak current	I_{BREAK}	—	0	5	μA	$V_o=35\text{V}$
<Total device>						
Standby current	I_{CCS}	—	1.3	1.8	mA	When output is off
Average current consumption	I_{CCA}	—	1.6	2.3	mA	$R_{RT}=10\text{k}\Omega$

◎Not designed for radiation resistance.

● Timing chart

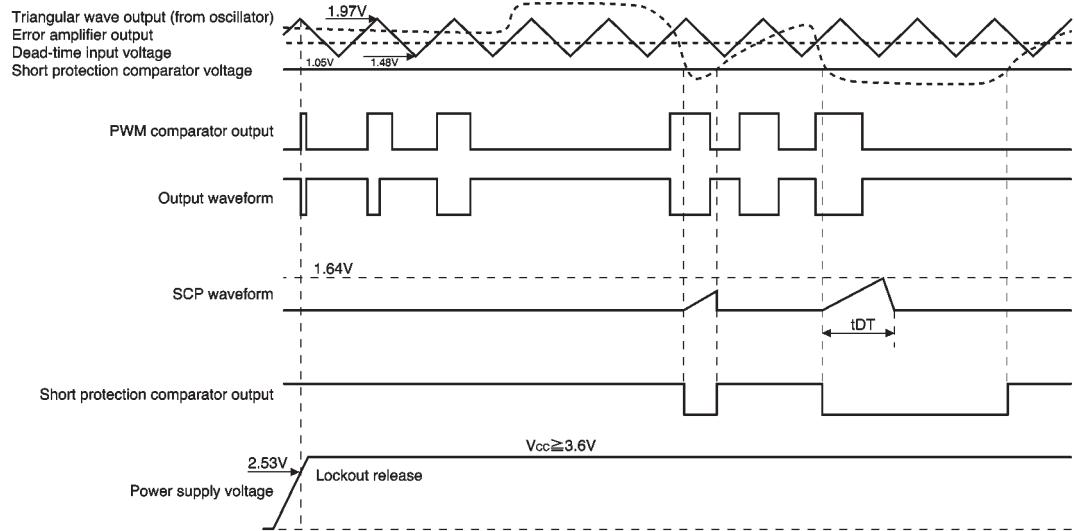


Fig.1

● Electrical characteristic curves

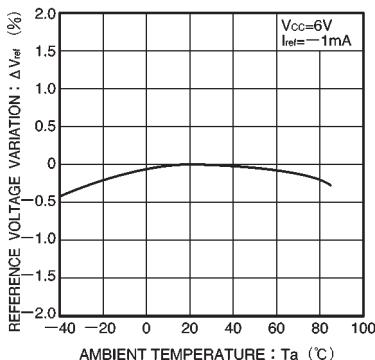


Fig.2 Reference voltage vs. ambient temperature

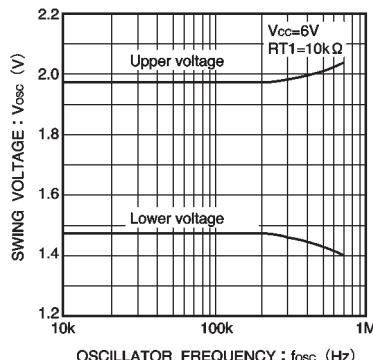


Fig.3 Swing voltage vs. frequency

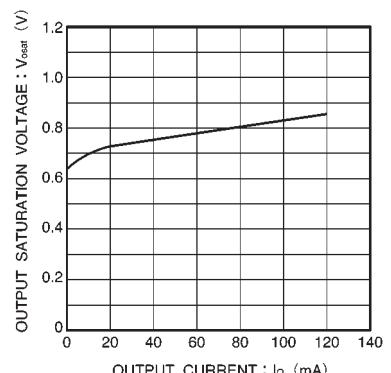


Fig.4 Output current vs. output saturation voltage

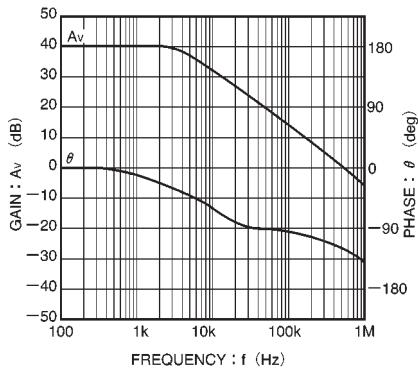
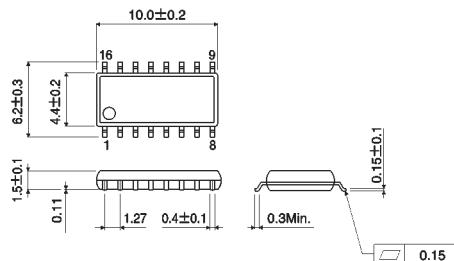
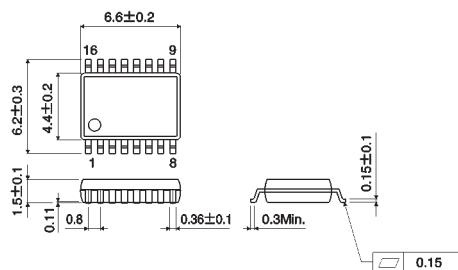



Fig.5 Error amplifier AC gain characteristic
(40dB close)


● External dimensions (Units: mm)

BA9741F

SOP16

BA9741FS

SSOP-A16