DATA SHEET

BAS55
 High－speed diode

Product specification
Supersedes data of April 1996
File under Discrete Semiconductors，SC01

FEATURES

- Small plastic SMD package
- High switching speed: max. 6 ns
- Continuous reverse voltage: max. 60 V
- Repetitive peak reverse voltage: max. 60 V
- Repetitive peak forward current: max. 600 mA .

APPLICATIONS

- High-speed switching in surface mounted circuits.

DESCRIPTION

The BAS55 is a high-speed switching diode fabricated in planar technology, and encapsulated in the small rectangular plastic SMD SOT23 package.

PINNING

PIN	DESCRIPTION
1	anode
2	not connected
3	cathode

MAM185

Marking code: L5p.
Fig. 1 Simplified outline (SOT23) and symbol.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
$\mathrm{V}_{\text {RRM }}$	repetitive peak reverse voltage		-	60	V
$\mathrm{~V}_{R}$	continuous reverse voltage		-	60	V
I_{F}	continuous forward current	see Fig.2; note 1	-	250	mA
$\mathrm{I}_{\text {FRM }}$	repetitive peak forward current		-	600	mA
$\mathrm{I}_{\text {FSM }}$	non-repetitive peak forward current	square wave; $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ prior to surge; see Fig.4 	$\mathrm{t}=1 \mu \mathrm{~s}$ $\mathrm{t}=100 \mu \mathrm{~s}$ $\mathrm{t}=10 \mathrm{~ms}$		

Note

1. Device mounted on an FR4 printed-circuit board.

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{F}	forward voltage	see Fig.3; $\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$; DC value; note 1	-	1.0	V
I_{R}	reverse current	$\begin{aligned} & \text { see Fig. } 5 \\ & \quad V_{R}=60 \mathrm{~V} \\ & V_{R}=60 \mathrm{~V} ; \mathrm{T}_{j}=150^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \mathrm{nA} \\ \mu \mathrm{~A} \\ \hline \end{array}$
C_{d}	diode capacitance	$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{R}}=0$; see Fig. 6	-	2.5	pF
t_{rr}	reverse recovery time	when switched from $I_{F}=400 \mathrm{~mA}$ to $\mathrm{I}_{\mathrm{R}}=400 \mathrm{~mA} ; \mathrm{R}_{\mathrm{L}}=100 \Omega$; measured at $\mathrm{I}_{\mathrm{R}}=40 \mathrm{~mA}$; see Fig. 7	-	6	ns
$\mathrm{V}_{\text {fr }}$	forward recovery voltage	when switched to $\mathrm{I}_{\mathrm{F}}=400 \mathrm{~mA}$; $\mathrm{t}_{\mathrm{r}}=30 \mathrm{~ns}$; see Fig. 8	-	2	V
		when switched to $\mathrm{I}_{\mathrm{F}}=400 \mathrm{~mA}$; $\mathrm{t}_{\mathrm{r}}=100 \mathrm{~ns}$; see Fig. 8	-	1.5	V

Note

1. $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; device has reached the thermal equilibrium when mounted on an FR4 printed-circuit board.

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$\mathrm{R}_{\text {th j } \mathrm{jp}}$	thermal resistance from junction to tie-point		330	$\mathrm{~K} / \mathrm{W}$
$\mathrm{R}_{\text {th j }-\mathrm{a}}$	thermal resistance from junction to ambient	note 1	500	$\mathrm{~K} / \mathrm{W}$

Note

1. Device mounted on an FR4 printed-circuit board.

GRAPHICAL DATA

Device mounted on an FR4 printed-circuit board.
Fig. 2 Maximum permissible continuous forward current as a function of ambient temperature.

Fig. 3 Forward current as a function of forward voltage; typical values.

Fig. 4 Maximum permissible non-repetitive peak forward current as a function of pulse duration.
(2) $\mathrm{V}_{\mathrm{R}}=60 \mathrm{~V}$; typical values.
Fig. 5 Reverse current as a function of junction temperature.

$\mathrm{f}=1 \mathrm{MHz} ; \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$.
Fig. 6 Diode capacitance as a function of reverse voltage; typical values.

Fig. 7 Reverse recovery voltage test circuit and waveforms.

PACKAGE OUTLINE

Fig. 9 SOT23.

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.	
Application information	
Where application information is given, it is advisory and does not form part of the specification.	

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

