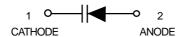
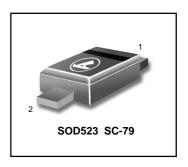


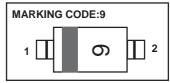
UHF variable capacitance diode

FEATURES


- · Excellent linearity
- \cdot Excellent matching to 2% DMA
- · Ultra small plastic SMD package
- · C28: 2.1 pF; ratio: 9
- · Low series resistance.

APPLICATIONS


- · Electronic tuning in UHF television tuners
- Voltage controlled oscillators


DESCRIPTION

The BB179 is a planar technology variable capacitance diode, in a SOD523 (SC-79) package. The excellent matching performance is achieved by gliding matching and a direct matching assembly procedure.

BB 179

LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _R	continuous reverse voltage		_	30	V
V_{RM}	peak reverse voltage	in series with a 10 $k\Omega$ resistor	-	35	V
I _F	continuous forward current		-	20	mΑ
T _{stg}	storage temperature		-55	+150	°C
T j	operating junction temperature		-55	+125	°C

ELECTRICAL CHARACTERISTICS T_j=25°C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	TYP.	UNIT
I _R	reverse current	$V_R = 30 V$; see Fig.2	-	_	10	nΑ
		$V_R = 30 V; T_j = 85$ °C; see Fig.2	_	_	200	nΑ
r s	diode series resistance	f = 470 MHz;	_	0.6	0.75	Ω
		V_R is the value at which Cd =9 pF		0.0	0.70	22
C _d	diode capacitance	$V_R = 1 V$; f = 1 MHz; see Figs 1and 3	18.22	_	21.26	pF
		$V_R = 28 V$; f = 1 MHz; see Figs 1and 3	1.951	_	2.225	pF
C d(1V)	capacitance ratio	f = 1 MHz	-	1.27	-	
C _{d(1V)}	capacitance ratio	f = 1 MHz	8.45	_	10.9	
C _{d(25V)}	capacitance ratio	f = 1 MHz	_	1.05	-	
$\begin{array}{c c} \Delta C_d \\ \hline C_d \end{array}$	capacitance matching	V _R = 1 to 28 V; in a sequence of 15 diodes(gliding)	-	_	2	%

BB 179

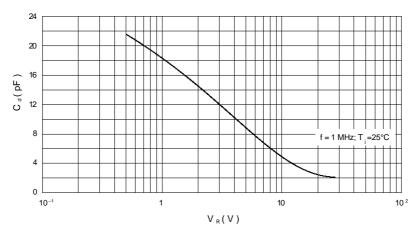


Fig.1 Diode capacitance as a function of reverse voltage; typical values.

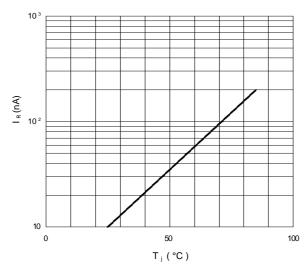


Fig.2 Reverse current as a function of junction temperature; maximum values.

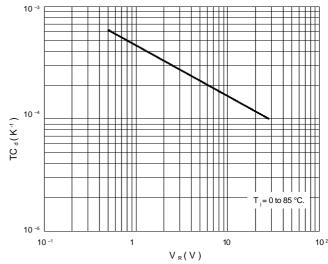


Fig.3 Temperature coefficient of diode capacitance as a function of reverse voltage; typical values.