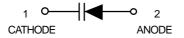
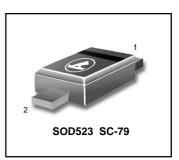


UHF variable capacitance diode

FEATURES


- · Excellent linearity
- · Excellent matching to 2% DMA
- · Ultra small plastic SMD package
- · C28: 2.1 pF; ratio: 9
- · Low series resistance.

APPLICATIONS


- · Electronic tuning in UHF television tuners
- · Voltage controlled oscillators

DESCRIPTION

The BB179B is a planar technology variable capacitance diode, in a SOD523 (SC-79) package. The excellent matching performance is achieved by gliding matching and a direct matching assembly procedure.

BB 179B

LIMITING VALUES	In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _R	continuous reverse voltage		_	32	V
V _{RM}	peak reverse voltage	in series with a 10 $k\Omega$ resistor	_	35	V
I _F	continuous forward current		_	20	mA
T stg	storage temperature		-55	+150	°C
Tj	operating junction temperature		-55	+125	°C

ELECTRICAL CHARACTERISTICS T $_{j}$ =25°C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	TYP.	UNIT
I _R	reverse current	V _R = 30 V; see Fig.2	_	_	10	nA
		V_{R} = 30 V; T _j =85°C; see Fig.2	-	_	200	nA
r _s	diode series resistance	f = 470 MHz;	_	0.6	0.75	Ω
		V $_{\rm R}$ is the value at which Cd =9 pF				
C d	diode capacitance	V $_{R}$ = 1 V; f = 1 MHz; see Figs 1and 3	18.22	_	20	pF
		V $_{\rm R}$ = 28 V; f = 1 MHz; see Figs 1and 3	1.9	_	2.25	pF
$\frac{C_{d(1V)}}{C_{d(2V)}}$	capacitance ratio	f = 1 MHz	_	1.27	_	
C d(1V) C d(28V)	capacitance ratio	f = 1 MHz	8.45	_	10	
$\frac{C_{d(25V)}}{C_{d(28V)}}$	capacitance ratio	f = 1 MHz	_	1.05	_	
$\frac{\Delta C_{d}}{C_{d}}$	capacitance matching	V _R = 1 to 28 V; in a sequence of 15 diodes(gliding)	_	_	2	%

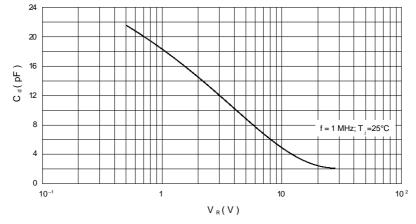


Fig.1 Diode capacitance as a function of reverse voltage; typical values.

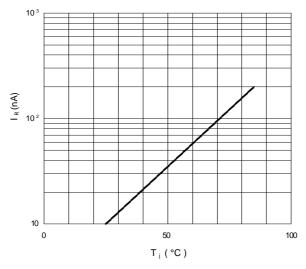


Fig.2 Reverse current as a function of junction temperature; maximum values.

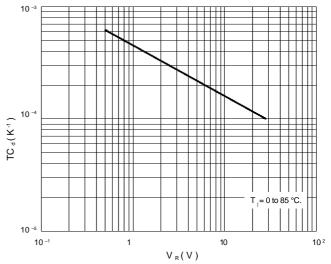


Fig.3 Temperature coefficient of diode capacitance as a function of reverse voltage; typical values.