Dual General Purpose Transistors

NPN Duals

These transistors are designed for general purpose amplifier applications. They are housed in the SOT-363/SC-88 which is designed for low power surface mount applications.

• Device Marking:

BC846BDW1T1 = 1B

BC847BDW1T1 = 1F

BC848CDW1T1 = 1L

Features

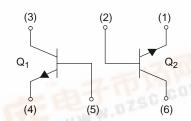
• Pb-Free Package is Available

MAXIMUM RATINGS

Rating	Symbol	BC846	BC847	BC848	Unit
Collector - Emitter Voltage	V _{CEO}	65	45	30	V
Collector-Base Voltage	V _{CBO}	80	50	30	V
Emitter-Base Voltage	V _{EBO}	6.0	6.0	5.0	V
Collector Current – Continuous	I _C	100	100	100	mAdc

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Total Device Dissipation Per Device FR-5 Board (Note 1) T _A = 25°C Derate Above 25°C	P _D	380 250 3.0	mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	328	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

1. $FR-5 = 1.0 \times 0.75 \times 0.062$ in

ON Semiconductor®

http://onsemi.com

SOT-363 **CASE 419B** STYLE 1

DIAGRAM

1x = Specific Device Code

x = B, F, L

m = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
BC846BDW1T1	SOT-363	3000 Units/Reel
BC847BDW1T1	SOT-363	3000 Units/Reel
BC847BDW1T1G	SOT-363 (Pb-Free)	3000 Units/Reel
BC848CDW1T1	SOT-363	3000 Units/Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•	•	•	•	•
Collector – Emitter Breakdown Voltage (I _C = 10 mA) BC846 BC847 BC848	V _(BR) CEO	65 45 30	- - -	- - -	V
Collector – Emitter Breakdown Voltage $ (I_C = 10 \ \mu\text{A}, \ V_{EB} = 0) \\ \text{BC846} \\ \text{BC847} \\ \text{BC848} $	V _(BR) CES	80 50 30	- - -	- - -	V
Collector – Base Breakdown Voltage $ \text{(I}_{C} = 10 \ \mu\text{A)} $ BC846 BC847 BC848	V _(BR) CBO	80 50 30	- - -	- - -	V
Emitter – Base Breakdown Voltage $ (I_E = 1.0 \; \mu A) \\ BC846 \\ BC847 \\ BC848 $	V _{(BR)EBO}	6.0 6.0 5.0	- - -	- - -	V
Collector Cutoff Current ($V_{CB} = 30 \text{ V}$) ($V_{CB} = 30 \text{ V}$, $T_A = 150^{\circ}\text{C}$)	I _{CBO}	- -	- -	15 5.0	nA μA
ON CHARACTERISTICS		ı	T	T	T
DC Current Gain $(I_C = 10~\mu\text{A},~V_{CE} = 5.0~\text{V}) \\ BC846B,~BC847B \\ BC848C$	h _{FE}	_ _	150 270	- -	-
$(I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V})$ BC846B, BC847B BC848C		200 420	290 520	450 800	
Collector – Emitter Saturation Voltage (I_C = 10 mA, I_B = 0.5 mA) (I_C = 100 mA, I_B = 5.0 mA)	V _{CE(sat)}	- -	- -	0.25 0.6	V
Base – Emitter Saturation Voltage (I_C = 10 mA, I_B = 0.5 mA) (I_C = 100 mA, I_B = 5.0 mA)	V _{BE(sat)}	_ _	0.7 0.9	_ _	V
Base – Emitter Voltage (I_C = 2.0 mA, V_{CE} = 5.0 V) (I_C = 10 mA, V_{CE} = 5.0 V)	V _{BE(on)}	580 -	660 -	700 770	mV
SMALL-SIGNAL CHARACTERISTICS					
Current – Gain – Bandwidth Product $(I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ Vdc}, f = 100 \text{ MHz})$	f _T	100	_	_	MHz
Output Capacitance (V _{CB} = 10 V, f = 1.0 MHz)	C _{obo}	_	_	4.5	pF
Noise Figure ($I_C = 0.2 \text{ mA}$, $V_{CE} = 5.0 \text{ Vdc}$, $R_S = 2.0 \text{ k}\Omega$, $f = 1.0 \text{ kHz}$, $BW = 200 \text{ Hz}$)	NF		_	10	dB

TYPICAL CHARACTERISTICS - BC847 & BC848

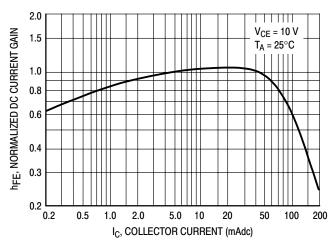


Figure 1. Normalized DC Current Gain

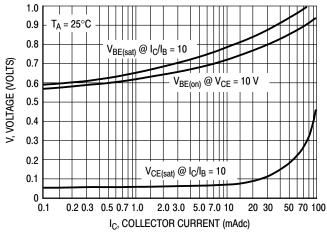


Figure 2. "Saturation" and "On" Voltages

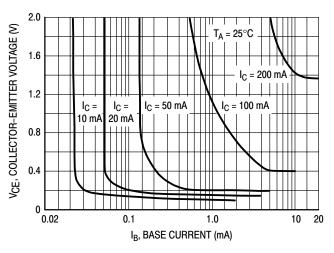


Figure 3. Collector Saturation Region

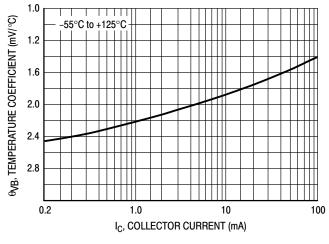


Figure 4. Base-Emitter Temperature Coefficient

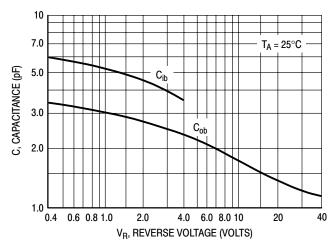


Figure 5. Capacitances

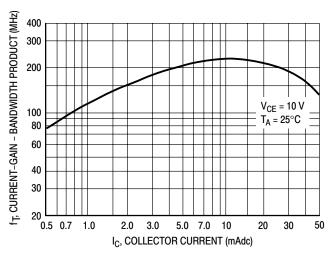


Figure 6. Current-Gain - Bandwidth Product

TYPICAL CHARACTERISTICS - BC846

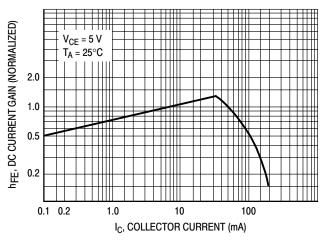


Figure 7. Normalized DC Current Gain

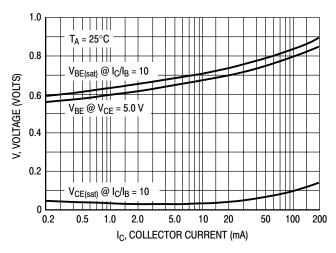


Figure 8. "On" Voltage

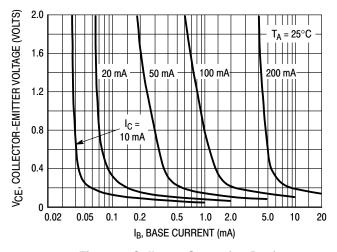


Figure 9. Collector Saturation Region

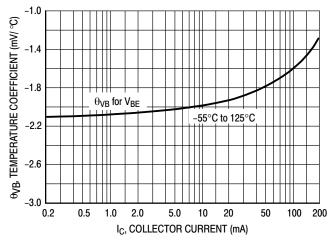


Figure 10. Base-Emitter Temperature Coefficient

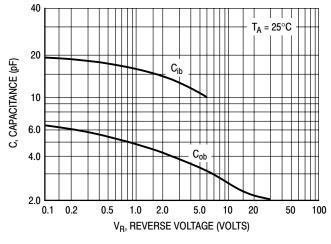


Figure 11. Capacitance

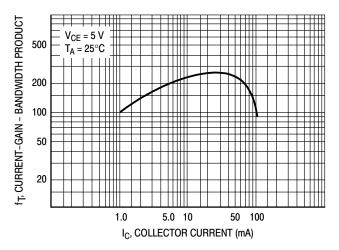


Figure 12. Current-Gain - Bandwidth Product

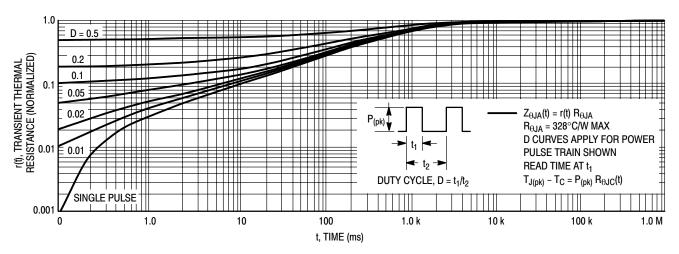
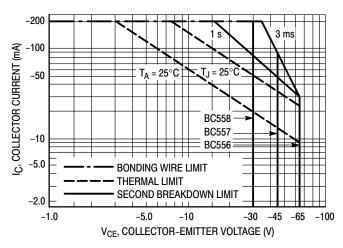
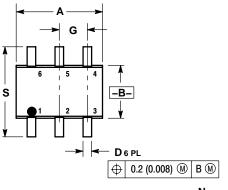
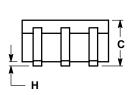
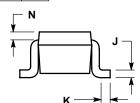


Figure 13. Thermal Response




Figure 14. Active Region Safe Operating Area

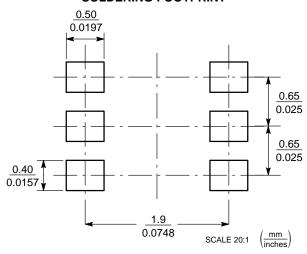

The safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.


The data of Figure 14 is based upon $T_{J(pk)} = 150^{\circ}C$; T_{C} or T_{A} is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} \leq 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 13. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by the secondary breakdown.

PACKAGE DIMENSIONS

SOT-363 (SC-88) CASE 419B-02 **ISSUE T**

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 419B-01 OBSOLETE, NEW STANDARD 419B-02.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.071	0.087	1.80	2.20	
В	0.045	0.053	1.15	1.35	
С	0.031	0.043	0.80	1.10	
D	0.004	0.012	0.10	0.30	
G	0.026 BSC		0.65 BSC		
Н		0.004		0.10	
J	0.004	0.010	0.10	0.25	
K	0.004	0.012	0.10	0.30	
N	0.008 REF		0.20 REF		
S	0.079	0.087	2.00 2.20		

- STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1

 - 5 BASE 1
 - COLLECTOR 2

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.